cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A277220 Exponential convolution of Fibonacci (A000045) and Catalan (A000108) numbers.

Original entry on oeis.org

0, 1, 3, 11, 43, 180, 790, 3590, 16745, 79705, 385615, 1890747, 9375216, 46931897, 236873261, 1204089630, 6159064015, 31678706490, 163739008070, 850051218980, 4430529313065, 23175017046351, 121617754070653, 640122809255716, 3378402106118508, 17875011275340275
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 06 2016

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,k)*Fibonacci(k)*Catalan(n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Oct 22 2018
  • Mathematica
    Table[Sum[Binomial[n, k] Fibonacci[k] CatalanNumber[n - k], {k, 0, n}], {n, 0, 30}] (* or *)
    Round@Table[(GoldenRatio^n Hypergeometric2F1[1/2, -n, 2, -4/GoldenRatio] - (-GoldenRatio)^(-n) Hypergeometric2F1[1/2, -n, 2, 4 GoldenRatio])/Sqrt[5], {n, 0, 30}] (* Round is equivalent to FullSimplify here, but is much faster *)
  • PARI
    for(n=0, 30, print1(sum(k=0,n, binomial(n,k)*fibonacci(k)* binomial(2*n-2*k,n-k)/(n-k+1)), ", ")) \\ G. C. Greubel, Oct 22 2018
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A000045(k) * A000108(n-k).
a(n) = (phi^n * hypergeom([1/2, -n], [2], -4/phi) - (-phi)^(-n) * hypergeom([1/2, -n], [2], 4*phi))/sqrt(5), where phi = (1+sqrt(5))/2 = A001622.
Recurrence: 19*(n+1)*(n+2)*(11*n+13)*a(n) + 2*(55*n^3+208*n^2+311*n+230)*a(n+1) + 2*(55*n^3+373*n^2+674*n+206)*a(n+3) = (n+2)*(297*n^2+1022*n+617)*a(n+2) + (n+3)*(n+5)*(11*n+2)*a(n+4).
E.g.f.: 2*exp(5*x/2)*sinh(x*sqrt(5)/2)*(BesselI_0(2*x) - BesselI_1(2*x))/sqrt(5) (the product of e.g.f. for Fibonacci and Catalan numbers).
a(n) ~ (phi + 4)^(n + 3/2) / (8 * sqrt(5*Pi) * n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 10 2018
Showing 1-1 of 1 results.