A278817 The least t such that there exists a sequence n = b_1 < b_2 < ... < b_t = A277278(n) such that b_1 + b_2 +...+ b_t is a perfect square.
1, 1, 3, 2, 1, 5, 2, 2, 6, 1, 3, 3, 2, 4, 3, 3, 1, 2, 4, 3, 3, 5, 2, 2, 2, 1, 3, 4, 4, 2, 2, 2, 3, 4, 4, 6, 1, 5, 3, 2, 2, 5, 5, 5, 3, 3, 3, 3, 2, 1, 6, 6, 3, 3, 3, 3, 6, 6, 2, 2, 2, 4, 4, 3, 1, 7, 7, 4, 4, 2, 2, 2, 3, 3, 3, 5, 5, 5, 5, 4, 2, 1, 2, 2, 2, 5, 5
Offset: 0
Keywords
Examples
a(0) = 1 via 0 = 0^2 a(1) = 1 via 1 = 1^2 a(2) = 3 via 2 + 3 + 4 = 3^2 a(3) = 2 via 3 + 6 = 3^2 a(4) = 1 via 4 = 2^2 a(5) = 5 via 5 + 6 + 7 + 8 + 10 = 6^2 a(6) = 2 via 6 + 10 = 4^2
Links
- Peter Kagey, Table of n, a(n) for n = 0..3000
Comments