cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277283 Expansion of Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6 in powers of x.

Original entry on oeis.org

1, 6, 27, 98, 315, 918, 2491, 6366, 15498, 36182, 81501, 177876, 377558, 781626, 1582173, 3137832, 6108051, 11687598, 22012816, 40855674, 74799828, 135210868, 241511115, 426570624, 745516240, 1290006276, 2211202692, 3756468658, 6327617862, 10572763842
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2491*x^6 + ...
		

Crossrefs

Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), A277212 (k=5), this sequence (k=6), A160539 (k=7).

Programs

  • Mathematica
    (QPochhammer[x^6, x^6]/QPochhammer[x, x]^6 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(6*k))/(1-x^k)^6, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016

Formula

G.f.: Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6.
a(n) ~ 35*sqrt(35) * exp(sqrt(35*n)*Pi/3) / (3456*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 21 2016