A277283 Expansion of Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6 in powers of x.
1, 6, 27, 98, 315, 918, 2491, 6366, 15498, 36182, 81501, 177876, 377558, 781626, 1582173, 3137832, 6108051, 11687598, 22012816, 40855674, 74799828, 135210868, 241511115, 426570624, 745516240, 1290006276, 2211202692, 3756468658, 6327617862, 10572763842
Offset: 0
Keywords
Examples
G.f.: 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2491*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Crossrefs
Programs
-
Mathematica
(QPochhammer[x^6, x^6]/QPochhammer[x, x]^6 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)
-
PARI
first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(6*k))/(1-x^k)^6, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
Formula
G.f.: Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6.
G.f.: (x^6; x^6)inf/((x; x)_inf)^6, where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(n) ~ 35*sqrt(35) * exp(sqrt(35*n)*Pi/3) / (3456*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 21 2016