cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277292 G.f. A(x) satisfies: Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2.

Original entry on oeis.org

1, 1, 4, 21, 122, 758, 4958, 33509, 233810, 1641150, 12364368, 71807506, 1354944972, -33794258600, 2524565441138, -186642439700891, 16196862324254354, -1602823227559245434, 179707702260054046760, -22656977557634759678794, 3191199098536326709613676, -499206960572108744520132444, 86277300996554233583925645468, -16395890677314419248813441481150
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2016

Keywords

Examples

			G.f.: A(x) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 + 33509*x^15 + 233810*x^17 + 1641150*x^19 + 12364368*x^21 +...
such that Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2, where
A(x)^2 = x^2 + 2*x^4 + 9*x^6 + 50*x^8 + 302*x^10 + 1928*x^12 + 12849*x^14 + 88122*x^16 + 621022*x^18 + 4411180*x^20 +...
A(x) + A(x)^2 = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 50*x^8 + 122*x^9 + 302*x^10 + 758*x^11 + 1928*x^12 + 4958*x^13 + 12849*x^14 + 33509*x^15 + 88122*x^16 + 233810*x^17 + 621022*x^18 + 1641150*x^19 + 4411180*x^20 +...
Also,
A( A(x) + A(x)^2 ) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 +...
which equals the Catalan series (A000108).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(Oxn=x*O(x^(2*n)), A = x +Oxn); for(i=1, 2*n, A = A + (x - subst(A+A^2, x, A-A^2 ))/2); polcoeff(A, 2*n-1)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) satisfies:
(1) A( A(x) + A(x)^2 ) = C(x),
(2) C( A(x) - A(x)^2 ) = A(x),
(3) A( A(x) - A(x)^2 ) = -C(-x),
(4) A( A(x-x^2) + A(x-x^2)^2 ) = x,
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers, A000108.

A277293 G.f. A(x) satisfies: Series_Reversion( A(x) + 2*A(x)^3 ) = A(x) - 2*A(x)^3.

Original entry on oeis.org

1, 6, 230, 11676, 663174, 41413812, 2680851420, 188202575736, 11594488853190, 1403241101718852, -168694608332762892, 147980852726994346248, -105389748185249598629220, 93603955226272690108355208, -97621599698823169573607867400, 118585871916859034002263802974192, -165925215611130932978517186291637434, 264930310299987157013624532678164003556, -478773962141712793295304310624498264046460
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2016

Keywords

Examples

			G.f.: A(x) = x + 6*x^5 + 230*x^9 + 11676*x^13 + 663174*x^17 + 41413812*x^21 + 2680851420*x^25 + 188202575736*x^29 + 11594488853190*x^33 +...
such that Series_Reversion( A(x) + 2*A(x)^3 ) = A(x) - 2*A(x)^3, where
A(x)^3 = x^3 + 18*x^7 + 798*x^11 + 43524*x^15 + 2593398*x^19 + 166441788*x^23 + 11038085612*x^27 + 778999431816*x^31 + 50589526452390*x^35 +...
A(x) + 2*A(x)^3 = x + 2*x^3 + 6*x^5 + 36*x^7 + 230*x^9 + 1596*x^11 + 11676*x^13 + 87048*x^15 + 663174*x^17 + 5186796*x^19 + 41413812*x^21 + 332883576*x^23 + 2680851420*x^25 + 22076171224*x^27 + 188202575736*x^29 + 1557998863632*x^31 + 11594488853190*x^33 + 101179052904780*x^35 +...
Also,
A( A(x) + 2*A(x)^3 ) = x + 2*x^3 + 12*x^5 + 96*x^7 + 880*x^9 + 8736*x^11 + 91392*x^13 +...+ 2^(n-1)*binomial(3*n-2,n-1)/(3*n-2)*x^(2*n-1) +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(Oxn=x*O(x^(4*n)), A = x +Oxn); for(i=1, 4*n, A = A + (x - subst(A + 2*A^3, x, A - 2*A^3 ))/2); polcoeff(A, 4*n-3)}
    for(n=1,25,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3) satisfies:
(1) A( A(x) + 2*A(x)^3 ) = G(x),
(2) G( A(x) - 2*A(x)^3 ) = A(x),
(3) A( A(x) - 2*A(x)^3 ) = -G(-x),
(4) A( A(x-2*x^3) + 2*A(x-2*x^3)^3 ) = x,
where G(x) = x + 2*G(x)^3 = Sum_{n>=1} 2^(n-1) * binomial(3*n-2,n-1)/(3*n-2) * x^(2*n-1).
Showing 1-2 of 2 results.