A277313 Decimal expansion of the nested logarithm log(1+log(2+log(3+log(4+...)))).
8, 2, 0, 3, 5, 9, 8, 6, 2, 2, 0, 8, 7, 8, 9, 7, 8, 8, 4, 7, 3, 4, 6, 6, 7, 9, 4, 9, 4, 0, 6, 3, 9, 1, 5, 8, 4, 1, 5, 9, 0, 9, 7, 5, 3, 4, 1, 3, 1, 6, 1, 9, 3, 7, 6, 5, 4, 6, 8, 7, 6, 7, 4, 9, 4, 8, 5, 0, 2, 4, 0, 7, 0, 1, 9, 2, 2, 9, 3, 8, 4, 6, 3, 2, 4, 5, 1, 7, 7, 4, 5, 4, 4, 7, 9, 2, 9, 9, 2, 8, 8, 2, 9, 8, 2
Offset: 0
Examples
0.82035986220878978847346679494...
Links
- Cade Brown, Table of n, a(n) for n = 0..14997
Crossrefs
Programs
-
C
// Computes b bits, and uses MPFR for multiprecision. #include
#include #include int main() { int b=256, i; int N = 500 + (int)(4 * floor(-56+sqrt(3561+50*b))); mpfr_t m; mpfr_init2(m, b); mpfr_set_ui(m, N, rnd); for (i = N; i > 0; --i) { mpfr_log(m, m, MPFR_RNDN); mpfr_add_ui(m, m, i - 1, MPFR_RNDN); } mpfr_printf("\nval %.*Rf\n\n", b - 10, m); mpfr_clear(m); } /* Cade Brown, Oct 10 2016 */ -
MATLAB
x=100; for i=99:-1:1 x=log(i+x); end %the initial value of x can be increased for greater precision, but it converges starting well below 100
-
Mathematica
RealDigits[SequenceLimit[N[Table[Log[Fold[#2 + Log[#1] &, Reverse@Range[n]]], {n, 1, 100}], 200]], 10, 105][[1]] (* Vladimir Reshetnikov, Oct 11 2016 *) RealDigits[ Fold[ Log[#1 + #2] &, 0, Reverse[ Range[74]]], 10, 111][[1]] (* Robert G. Wilson v, Oct 26 2016 *)
Extensions
More digits from Alois P. Heinz, Oct 09 2016
Comments