A277328 Number of primes (counted with multiplicity) dividing gcd(A260443(n), A260443(n+1)): a(n) = A001222(A277198(n)).
0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 2, 3, 0, 0, 3, 3, 1, 1, 4, 4, 1, 1, 4, 4, 2, 2, 3, 4, 0, 0, 4, 4, 3, 2, 5, 6, 1, 1, 7, 6, 2, 3, 6, 6, 1, 1, 6, 6, 3, 3, 7, 7, 2, 2, 6, 6, 3, 3, 4, 5, 0, 0, 5, 5, 4, 4, 8, 8, 2, 2, 9, 9, 4, 4, 8, 9, 1, 1, 10, 9, 5, 5, 10, 11, 2, 2, 11, 10, 5, 6, 8, 8, 1, 1, 8, 8, 5, 4, 10, 11, 3, 3, 12
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8192
Programs
-
Scheme
(define (A277328 n) (A001222 (A277198 n))) ;; A standalone implementation: (define (A277328 n) (reduce + 0 (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n))))) (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2)))))) (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0))))))) (define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))