A277363 Self-convolution of a(n)/4^n gives fibonorials (A003266).
1, 2, 6, 52, 646, 13756, 458780, 24525352, 2094232006, 287618113900, 63647556127412, 22739228686869592, 13126310109506278556, 12250085882856201785816, 18488349380363585366790264, 45134497176992058331312333648, 178246891228174428563552421395782
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (4^n *mul((<<0|1>, <1|1>>^i)[1, 2], i=1..n)- add(a(k)*a(n-k), k=1..n-1))/2) end: seq(a(n), n=0...20); # Alois P. Heinz, Oct 12 2016
-
Mathematica
With[{n = 20}, Sqrt[Sum[Fibonorial[k] (4 x)^k, {k, 0, n - 1}] + O[x]^n][[3]]] (* before version 10.0 define Fibonorial[n_] := Product[Fibonacci[k], {k, 1, n}] *)
Formula
Sum_{k=0..n} a(k)/4^k * a(n-k)/4^(n-k) = A003266(n).
Comments