cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A277385 Records in A277384.

Original entry on oeis.org

15, 33, 65, 105, 153, 209, 273, 345, 425, 513, 609, 713, 825, 945, 1073, 1209, 1353, 1505, 1665, 1833, 2009, 2193, 2385, 2585, 2793, 3009, 3233, 3465, 3705, 3953, 4209, 4473, 4745, 5025, 5313, 5609, 5913, 6225, 6545, 6873, 7209, 7553, 7905, 8265, 8633, 9009
Offset: 1

Views

Author

Colin Barker, Oct 12 2016

Keywords

Comments

Essentially the same as A145923. - R. J. Mathar, Oct 23 2016

Crossrefs

Cf. A277384.

Programs

  • Mathematica
    Join[{15}, LinearRecurrence[{3, -3, 1}, {33, 65, 105}, 25]] (* or *) Join[{15}, Table[4*n^2 + 12*n - 7, {n,2,25}]] (* G. C. Greubel, Oct 12 2016 *)
  • PARI
    Vec(x*(15-12*x+11*x^2-6*x^3)/(1-x)^3 + O(x^60))

Formula

G.f.: x*(15 -12*x +11*x^2 -6*x^3) / (1-x)^3.
E.g.f.: 7 + 6*x + (4*x^2 + 16*x - 7)*exp(x). - G. C. Greubel, Oct 12 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
a(n) = 4*n^2 + 12*n - 7 for n>1.
Showing 1-1 of 1 results.