cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277391 a(n) = n!*LaguerreL(n, -2*n).

Original entry on oeis.org

1, 3, 34, 654, 17688, 616120, 26252496, 1322624016, 76909665664, 5069558461824, 373529452588800, 30422117430022912, 2713911389090970624, 263171888496899625984, 27563036166079327578112, 3100736138961250867968000, 372888702864658105915244544
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*2^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -2*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k]*2^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*2^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 2^k * n^k / k!.
a(n) ~ (1 + sqrt(3))^(2*n+1) * n^n / (3^(1/4) * 2^(n+1) * exp((2 - sqrt(3))*n)).