A277392 a(n) = n!*LaguerreL(n, -3*n).
1, 4, 62, 1626, 59928, 2844120, 165100752, 11331597942, 897635712384, 80602042275756, 8090067511468800, 897561658361441106, 109072492644378442752, 14407931244544181001216, 2055559499598438969956352, 314997663481165477898736750, 51601245736595962597616222208
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
- Wikipedia, Laguerre polynomials
Crossrefs
Programs
-
Magma
[Factorial(n)*(&+[Binomial(n,k)*3^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Mathematica
Table[n!*LaguerreL[n, -3*n], {n, 0, 20}] Flatten[{1, Table[n!*Sum[Binomial[n, k]*3^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
-
PARI
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*3^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
Formula
a(n) = n! * Sum_{k=0..n} binomial(n, k) * 3^k * n^k / k!.
a(n) ~ sqrt(1/2+5/(2*sqrt(21))) * (5+sqrt(21))^n * exp(n*(sqrt(21)-5)/2) * n^n/2^n.