cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277403 E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral A(x) dx.

Original entry on oeis.org

1, 2, 10, 90, 1190, 20930, 462070, 12326790, 386855630, 14000898310, 575440398330, 26532920708070, 1358954912773010, 76682330257445570, 4734315243483414890, 317932511564758225170, 23106045191162625194230, 1809303767549542227341490, 152057767850058496005946030, 13668688227104664304597942910, 1310201986290043690952261887230, 133552478071366935949713096470670, 14440878313638992240490923468851610
Offset: 1

Views

Author

Paul D. Hanna, Oct 14 2016

Keywords

Comments

a(n) is divisible by 10 for n>2 (conjecture).

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 90*x^4/4! + 1190*x^5/5! + 20930*x^6/6! + 462070*x^7/7! + 12326790*x^8/8! + 386855630*x^9/9! + 14000898310*x^10/10! +...
such that
A(x - Integral A(x) dx) = x + x^2/2! + 2*x^3/3! + 10*x^4/4! + 90*x^5/5! + 1190*x^6/6! + 20930*x^7/7! + 462070*x^8/8! +...+ a(n)*x^(n+1)/(n+1)! +...
which equals x + Integral A(x) dx.
RELATED SERIES.
Let G(x) = Integral A(x) dx, then
G( (A(x) + x)/2 ) = x^2/2! + 5*x^3/3! + 45*x^4/4! + 595*x^5/5! + 10465*x^6/6! + 231035*x^7/7! + 6163395*x^8/8! +...+ a(n)/2*x^n/n! +...
so that A(x) = x + 2 * G( (A(x) + x)/2 ).
A( (A(x) + x)/2 ) = x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3885*x^5/5! + 81185*x^6/6! + 2093735*x^7/7! + 64463245*x^8/8! + 2313446975*x^9/9! + 95044136915*x^10/10! +...
which equals (A'(x) - 1)/(A'(x) + 1).
		

Crossrefs

Programs

  • Mathematica
    m = 24; A[_] = 0;
    Do[G[x_] = Integrate[A[x], x]; A[x_] = x + 2 G[(A[x] + x)/2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F = x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - intformal(F)) - intformal(F), #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

Let G(x) = Integral A(x) dx, then e.g.f. A(x) also satisfies:
(1) A( (A(x) + x)/2 ) = (A'(x) - 1)/(A'(x) + 1).
(2) A(x) = x + 2 * G( (A(x) + x)/2 ).
(3) A(x) = -x + 2 * Series_Reversion(x - G(x)).
(4) R(x) = -x + 2 * Series_Reversion(x + G(x)), where R(A(x)) = x.
(5) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).