cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A277411 Column 1 of triangle A277410.

Original entry on oeis.org

0, 3, 13, 38, 94, 213, 459, 960, 1972, 4007, 8089, 16266, 32634, 65385, 130903, 261956, 524080, 1048347, 2096901, 4194030, 8388310, 16776893, 33554083, 67108488, 134217324, 268435023, 536870449, 1073741330, 2147483122, 4294966737, 8589933999, 17179868556, 34359737704, 68719476035, 137438952733, 274877906166, 549755813070, 1099511626917, 2199023254651, 4398046510160
Offset: 1

Views

Author

Paul D. Hanna, Oct 25 2016

Keywords

Crossrefs

Programs

  • PARI
    {A277410(n, k) = my(A=x); for(i=1, n, A = x + subst(intformal(A +x*O(x^n)), x, y*A + (1-y)*x ) ); n!*polcoeff(polcoeff(A, n, x), k, y)}
    for(n=1, 30, print1(A277410(n+1, 1), ", "));

Formula

Conjectures from Colin Barker, Nov 04 2016: (Start)
G.f.: x^2*(3-2*x) / ((1-x)^3*(1-2*x)).
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4) for n>4.
a(n) = (8*(2^n-1)-n*(n+7))/2. (End)

A277412 A diagonal of triangle A277410.

Original entry on oeis.org

1, 13, 165, 2310, 36330, 640710, 12588345, 273544425, 6529047525, 170116046100, 4812116809500, 147071309685300, 4835838768886125, 170422360844360625, 6415409821472276625, 257182138353489599250, 10948868951071241940750, 493742086990731259931250, 23529007012831307040178125, 1182267810558397149214753125, 62507026744534189248771965625, 3470421725511913171914539625000, 201956614461150241288627906875000
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2016

Keywords

Comments

The adjacent diagonal in triangle A277410 forms the odd double factorials.

Crossrefs

Programs

  • PARI
    {A277410(n, k) = my(A=x); for(i=1, n, A = x + subst(intformal(A +x*O(x^n)), x, y*A + (1-y)*x ) ); n!*polcoeff(polcoeff(A, n, x), k, y)}
    for(n=0, 30, print1(A277410(n+3, n), ", "));

A210949 E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(A(x))).

Original entry on oeis.org

1, 1, 4, 29, 309, 4383, 78121, 1684706, 42801222, 1255919755, 41918624013, 1572257236114, 65619165625383, 3022617826829288, 152615633802149416, 8397224009015443509, 500957609480739613321, 32261529179806961067634, 2234133327582388824135291
Offset: 1

Views

Author

Paul D. Hanna, Jul 22 2012

Keywords

Comments

An unsigned version of A067146.
Equals row sums of triangle A277410.
Is this a duplicate of A014622, which is related to f(f(x))f'(x)=-1 ? - R. J. Mathar, May 13 2025

Examples

			E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 29*x^4/4! + 309*x^5/5! + 4383*x^6/6! +...
Let G(x) = Integral A(x) dx, then A(x) = x + G(A(x)) where
G(x) = x^2/2! + x^3/3! + 4*x^4/4! + 29*x^5/5! + 309*x^6/6! + 4383*x^7/7! +...
Also,
A(x) = x + G(x) + d/dx G(x)^2/2! + d^2/dx^2 G(x)^3/3! + d^3/dx^3 G(x)^4/4! +...
log(A(x)/x) = G(x)/x + d/dx G(x)^2/(2!*x) + d^2/dx^2 G(x)^3/(3!*x) + d^3/dx^3 G(x)^4/(4!*x) +...
By definition, A'(x) = 1/(1 - A(A(x))), where
A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 101*x^4/4! + 1313*x^5/5! + 22235*x^6/6! + 466356*x^7/7! + 11710760*x^8/8! +...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[_] = 0;
    Do[A[x_] = InverseSeries[Integrate[1 - A[x], x] + O[x]^m], {m}];
    CoefficientList[A[x], x] * Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n)=local(A=x,G);for(i=1,n,G=intformal(A+x*O(x^n));A=serreverse(x-G));n!*polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=x,G);for(i=1,n,G=intformal(A+x*O(x^n));A=x+subst(G,x,A+x*O(x^n))); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x,G);for(i=0,n,G=intformal(A+x*O(x^n)); A=x+sum(m=1, n, Dx(m-1, G^m/m!))); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x,G);for(i=0,n,G=intformal(A+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, G^m/x/m!)+x*O(x^n)))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=x); for(i=1,n, A = serreverse(intformal(1-A +x*O(x^n)))); n!*polcoeff(A,n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = Series_Reversion( Integral 1 - A(x) dx ).
(2) A''(x) = 1 / ( (1 - A(A(x)))^3 * (1 - A(A(A(x)))) ).
Let G(x) = Integral A(x) dx with G(0)=0, then the e.g.f. A(x) satisfies:
(3) A(x) = x + G(A(x)) or, equivalently, A(x - G(x)) = x.
(4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n / n!.
(5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n/(n!*x) ).
a(n) = Sum_{k=0..n-1} A277410(n,k).

A279843 E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral 2*A(x) dx.

Original entry on oeis.org

1, 3, 18, 189, 2907, 59373, 1520019, 46964934, 1705072680, 71304998301, 3382510434561, 179805942701262, 10604941134768027, 688310036217216666, 48823571643364894410, 3762575719966561217301, 313432935903428395412205, 28098727418570995251538128, 2700377607104440375587008499, 277246288187233901613660728700
Offset: 1

Views

Author

Paul D. Hanna, Dec 29 2016

Keywords

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 18*x^3/3! + 189*x^4/4! + 2907*x^5/5! + 59373*x^6/6! + 1520019*x^7/7! + 46964934*x^8/8! + 1705072680*x^9/9! + 71304998301*x^10/10! + 3382510434561*x^11/11! + 179805942701262*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - G(x)) = x + 2*G(x) where
G(x) = x^2/2! + 3*x^3/3! + 18*x^4/4! + 189*x^5/5! + 2907*x^6/6! + 59373*x^7/7! + 1520019*x^8/8! + 46964934*x^9/9! + 1705072680*x^10/10! +...
Also, A(x) = x + 3 * G( (A(x) + 2*x)/3 ).
RELATED SERIES.
We have (A(x) + 2*x)/3 = Series_Reversion( x - Integral A(x) dx ), where
(A(x) + 2*x)/3 = x + x^2/2! + 6*x^3/3! + 63*x^4/4! + 969*x^5/5! + 19791*x^6/6! + 506673*x^7/7! + 15654978*x^8/8! + 568357560*x^9/9! + 23768332767*x^10/10! + 1127503478187*x^11/11! + 59935314233754*x^12/12! +...
Further, A( (A(x) + 2*x)/3 ) = (A'(x) - 1)/(A'(x) + 2), which begins
A( (A(x) + 2*x)/3 ) = x + 4*x^2/2! + 33*x^3/3! + 441*x^4/4! + 8241*x^5/5! + 199071*x^6/6! + 5922360*x^7/7! + 209986506*x^8/8! + 8665824933*x^9/9! + 408861881955*x^10/10! + 21747689650404*x^11/11! +...
		

Crossrefs

Programs

  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n,p=1,q=2) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A,n)}
    for(n=1, 30, print1(a(n,1,2), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n,p=1,q=2) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n,1,2), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=1;q=2; A=x; for(i=1,N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G,x,(p*A + q*x)/(p+q)));Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral A(x) dx) = x + Integral 2*A(x) dx.
(2) A(x) = x + 3 * G( (A(x) + 2*x)/3 ), where G(x) = Integral A(x) dx.
(3) A(x) = -2*x + 3 * Series_Reversion(x - Integral A(x) dx).
(4) A( (A(x) + 2*x)/3 ) = (A'(x) - 1)/(A'(x) + 2).
(5) A'(x - Integral A(x) dx) = (1 + 2*A(x))/(1 - A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 3^(n-k-1).

A277403 E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral A(x) dx.

Original entry on oeis.org

1, 2, 10, 90, 1190, 20930, 462070, 12326790, 386855630, 14000898310, 575440398330, 26532920708070, 1358954912773010, 76682330257445570, 4734315243483414890, 317932511564758225170, 23106045191162625194230, 1809303767549542227341490, 152057767850058496005946030, 13668688227104664304597942910, 1310201986290043690952261887230, 133552478071366935949713096470670, 14440878313638992240490923468851610
Offset: 1

Views

Author

Paul D. Hanna, Oct 14 2016

Keywords

Comments

a(n) is divisible by 10 for n>2 (conjecture).

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 90*x^4/4! + 1190*x^5/5! + 20930*x^6/6! + 462070*x^7/7! + 12326790*x^8/8! + 386855630*x^9/9! + 14000898310*x^10/10! +...
such that
A(x - Integral A(x) dx) = x + x^2/2! + 2*x^3/3! + 10*x^4/4! + 90*x^5/5! + 1190*x^6/6! + 20930*x^7/7! + 462070*x^8/8! +...+ a(n)*x^(n+1)/(n+1)! +...
which equals x + Integral A(x) dx.
RELATED SERIES.
Let G(x) = Integral A(x) dx, then
G( (A(x) + x)/2 ) = x^2/2! + 5*x^3/3! + 45*x^4/4! + 595*x^5/5! + 10465*x^6/6! + 231035*x^7/7! + 6163395*x^8/8! +...+ a(n)/2*x^n/n! +...
so that A(x) = x + 2 * G( (A(x) + x)/2 ).
A( (A(x) + x)/2 ) = x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3885*x^5/5! + 81185*x^6/6! + 2093735*x^7/7! + 64463245*x^8/8! + 2313446975*x^9/9! + 95044136915*x^10/10! +...
which equals (A'(x) - 1)/(A'(x) + 1).
		

Crossrefs

Programs

  • Mathematica
    m = 24; A[_] = 0;
    Do[G[x_] = Integrate[A[x], x]; A[x_] = x + 2 G[(A[x] + x)/2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F = x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - intformal(F)) - intformal(F), #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

Let G(x) = Integral A(x) dx, then e.g.f. A(x) also satisfies:
(1) A( (A(x) + x)/2 ) = (A'(x) - 1)/(A'(x) + 1).
(2) A(x) = x + 2 * G( (A(x) + x)/2 ).
(3) A(x) = -x + 2 * Series_Reversion(x - G(x)).
(4) R(x) = -x + 2 * Series_Reversion(x + G(x)), where R(A(x)) = x.
(5) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).

A279844 E.g.f. satisfies: A(x - Integral 2*A(x) dx) = x + Integral A(x) dx.

Original entry on oeis.org

1, 3, 27, 441, 10593, 338715, 13603923, 660689217, 37773985257, 2492351980659, 186888829248171, 15733456044557193, 1472423968474987185, 151932311464679521803, 17166519680224611739203, 2111435499783771418877073, 281279117575497421255121721, 40406056752677361995435879907, 6234806360224720540046684747547, 1029860015641146082486445487150681
Offset: 1

Views

Author

Paul D. Hanna, Dec 30 2016

Keywords

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 27*x^3/3! + 441*x^4/4! + 10593*x^5/5! + 338715*x^6/6! + 13603923*x^7/7! + 660689217*x^8/8! + 37773985257*x^9/9! + 2492351980659*x^10/10! + 186888829248171*x^11/11! + 15733456044557193*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 2*G(x)) = x + G(x) where
G(x) = x^2/2! + 3*x^3/3! + 27*x^4/4! + 441*x^5/5! + 10593*x^6/6! + 338715*x^7/7! + 13603923*x^8/8! + 660689217*x^9/9! + 37773985257*x^10/10! +...
Also, A(x) = x + 3 * G( (2*A(x) + x)/3 ).
RELATED SERIES.
We have (2*A(x) + x)/3 = Series_Reversion( x - Integral 2*A(x) dx ), where
(2*A(x) + x)/3 = x + 2*x^2/2! + 18*x^3/3! + 294*x^4/4! + 7062*x^5/5! + 225810*x^6/6! + 9069282*x^7/7! + 440459478*x^8/8! + 25182656838*x^9/9! + 1661567987106*x^10/10! + 124592552832114*x^11/11! + 10488970696371462*x^12/12! +...
Further, A( (2*A(x) + x)/3 ) = (A'(x) - 1)/(2*A'(x) + 1), which begins
A( (2*A(x) + x)/3 ) = x + 5*x^2/2! + 63*x^3/3! + 1311*x^4/4! + 38445*x^5/5! + 1464381*x^6/6! + 68939271*x^7/7! + 3879180855*x^8/8! + 254691006453*x^9/9! + 19160241768837*x^10/10! + 1628342402620383*x^11/11! + 154564849209408975*x^12/12! +...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[_] = 0;
    Do[G[x_] = Integrate[A[x], x]; A[x_] = x + 3 G[(2 A[x] + x)/3] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! // Rest (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n, p=2, q=1) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n, 2, 1), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n, p=2, q=1) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n, 2, 1), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=2; q=1; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral 2*A(x) dx) = x + Integral A(x) dx.
(2) A(x) = x + 3 * G( (2*A(x) + x)/3 ), where G(x) = Integral A(x) dx.
(3) A(x) = -x/2 + 3/2 * Series_Reversion(x - Integral 2*A(x) dx).
(4) A( (2*A(x) + x)/3 ) = (A'(x) - 1)/(2*A'(x) + 1).
(5) A'(x - Integral 2*A(x) dx) = (1 + A(x))/(1 - 2*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k * 3^(n-k-1).

A280571 E.g.f. satisfies: A(x - Integral 3*A(x) dx) = x + Integral A(x) dx.

Original entry on oeis.org

1, 4, 52, 1228, 42652, 1972324, 114581476, 8051020348, 666126945340, 63620722928308, 6907454641512244, 842227742687112604, 114192665828161184332, 17076069626235659815108, 2796969496541969481342100, 498871283058754285439126092, 96403472225110465517090352700, 20094942949266343527252229063204, 4500802213556155723422379457382916, 1079478060677848794106956676648220860
Offset: 1

Views

Author

Paul D. Hanna, Jan 05 2017

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 52*x^3/3! + 1228*x^4/4! + 42652*x^5/5! + 1972324*x^6/6! + 114581476*x^7/7! + 8051020348*x^8/8! + 666126945340*x^9/9! + 63620722928308*x^10/10! + 6907454641512244*x^11/11! + 842227742687112604*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 3*G(x)) = x + G(x) where
G(x) = x^2/2! + 4*x^3/3! + 52*x^4/4! + 1228*x^5/5! + 42652*x^6/6! + 1972324*x^7/7! + 114581476*x^8/8! + 8051020348*x^9/9! + 666126945340*x^10/10! + 63620722928308*x^11/11! + 6907454641512244*x^12/12! +...
Also, A(x) = x + 4 * G( (3*A(x) + x)/4 ).
RELATED SERIES.
We have (3*A(x) + x)/4 = Series_Reversion( x - Integral 3*A(x) dx ), where
(3*A(x) + x)/4 = x + 3*x^2/2! + 39*x^3/3! + 921*x^4/4! + 31989*x^5/5! + 1479243*x^6/6! + 85936107*x^7/7! + 6038265261*x^8/8! + 499595209005*x^9/9! + 47715542196231*x^10/10! + 5180590981134183*x^11/11! + 631670807015334453*x^12/12! +...
Further, A( (3*A(x) + x)/4 ) = (A'(x) - 1)/(3*A'(x) + 1), which begins
A( (3*A(x) + x)/4 ) = x + 7*x^2/2! + 127*x^3/3! + 3817*x^4/4! + 161881*x^5/5! + 8924923*x^6/6! + 608517595*x^7/7! + 49615007497*x^8/8! + 4722073055173*x^9/9! + 515139762620935*x^10/10! + 63506672456719651*x^11/11! + 8747178021763399909*x^12/12! +...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[_] = 0;
    Do[A[x_] = -x/3 + 4/3 InverseSeries[x-Integrate[3 A[x], x] + O[x]^m], {m}];
    CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n, p=3, q=1) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n, 3, 1), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n, p=3, q=1) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n, 3, 1), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=3; q=1; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral 3*A(x) dx) = x + Integral A(x) dx.
(2) A(x) = x + 4 * G( (3*A(x) + x)/4 ), where G(x) = Integral 3*A(x) dx.
(3) A(x) = -x/3 + 4/3 * Series_Reversion(x - Integral 3*A(x) dx).
(4) A( (3*A(x) + x)/4 ) = (A'(x) - 1)/(3*A'(x) + 1).
(5) A'(x - Integral 3*A(x) dx) = (1 + A(x))/(1 - 3*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 3^k * 4^(n-k-1).

A280572 E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral 4*A(x) dx.

Original entry on oeis.org

1, 5, 40, 525, 10025, 253475, 8015725, 305359050, 13645726250, 701304298375, 40822454374125, 2658840618527250, 191861336190647375, 15213199343853357500, 1316408013706224687500, 123576861126283832953125, 12521371849855149886590625, 1363361618975383978443843750, 158900334287408210286438971875, 19755940413686794723417400000000, 2612146114817877629253999384562500, 366294181903982533559997504649828125
Offset: 1

Views

Author

Paul D. Hanna, Jan 05 2017

Keywords

Examples

			E.g.f.: A(x) = x + 5*x^2/2! + 40*x^3/3! + 525*x^4/4! + 10025*x^5/5! + 253475*x^6/6! + 8015725*x^7/7! + 305359050*x^8/8! + 13645726250*x^9/9! + 701304298375*x^10/10! + 40822454374125*x^11/11! + 2658840618527250*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - G(x)) = x + 4*G(x) where
G(x) = x^2/2! + 5*x^3/3! + 40*x^4/4! + 525*x^5/5! + 10025*x^6/6! + 253475*x^7/7! + 8015725*x^8/8! + 305359050*x^9/9! + 13645726250*x^10/10! + 701304298375*x^11/11! + 40822454374125*x^12/12! +...
Also, A(x) = x + 5 * G( (A(x) + 4*x)/5 ).
RELATED SERIES.
We have (A(x) + 4*x)/5 = Series_Reversion( x - Integral A(x) dx ), where
(A(x) + 4*x)/5 = x + x^2/2! + 8*x^3/3! + 105*x^4/4! + 2005*x^5/5! + 50695*x^6/6! + 1603145*x^7/7! + 61071810*x^8/8! + 2729145250*x^9/9! + 140260859675*x^10/10! + 8164490874825*x^11/11! + 531768123705450*x^12/12! +...
Further, A( (A(x) + 4*x)/5 ) = (A'(x) - 1)/(A'(x) + 4), which begins
A( (A(x) + 4*x)/5 ) = x + 6*x^2/2! + 63*x^3/3! + 1045*x^4/4! + 24105*x^5/5! + 716195*x^6/6! + 26137820*x^7/7! + 1134457060*x^8/8! + 57203895725*x^9/9! + 3292221321425*x^10/10! + 213282348138700*x^11/11! + 15380885339509825*x^12/12! +...
		

Crossrefs

Programs

  • Mathematica
    m = 23; A[_] = 0;
    Do[A[x_] = -4 x + 5 InverseSeries[x - Integrate[A[x], x] + O[x]^m], {m}];
    CoefficientList[A[x], x] * Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n, p=1, q=4) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n, 1, 4), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n, p=1, q=4) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n, 1, 4), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=1; q=4; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral A(x) dx) = x + Integral 4*A(x) dx.
(2) A(x) = x + 5 * G( (A(x) + 4*x)/5 ), where G(x) = Integral A(x) dx.
(3) A(x) = -4*x + 5 * Series_Reversion(x - Integral A(x) dx).
(4) A( (A(x) + 4*x)/5 ) = (A'(x) - 1)/(A'(x) + 4).
(5) A'(x - Integral A(x) dx) = (1 + 4*A(x))/(1 - A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 5^(n-k-1).

A280573 E.g.f. satisfies: A(x - Integral 2*A(x) dx) = x + Integral 3*A(x) dx.

Original entry on oeis.org

1, 5, 55, 1075, 30825, 1174725, 56153575, 3241453075, 219981653625, 17205716877125, 1527315775776375, 152004555650445875, 16793815038459239625, 2042866310966722613125, 271723598687954810434375, 39287423162026628955721875, 6143464129092882413626065625, 1034396495380447234136660853125, 186805274512176503194633726284375, 36060209533917578045193572845421875
Offset: 1

Views

Author

Paul D. Hanna, Jan 05 2017

Keywords

Examples

			E.g.f.: A(x) = x + 5*x^2/2! + 55*x^3/3! + 1075*x^4/4! + 30825*x^5/5! + 1174725*x^6/6! + 56153575*x^7/7! + 3241453075*x^8/8! + 219981653625*x^9/9! + 17205716877125*x^10/10! + 1527315775776375*x^11/11! + 152004555650445875*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 2*G(x)) = x + 3*G(x) where
G(x) = x^2/2! + 5*x^3/3! + 55*x^4/4! + 1075*x^5/5! + 30825*x^6/6! + 1174725*x^7/7! + 56153575*x^8/8! + 3241453075*x^9/9! + 219981653625*x^10/10! + 17205716877125*x^11/11! + 1527315775776375*x^12/12! +...
Also, A(x) = x + 5 * G( (2*A(x) + 3*x)/5 ).
RELATED SERIES.
We have (2*A(x) + 3*x)/5 = Series_Reversion( x - Integral 2*A(x) dx ), where
(2*A(x) + 3*x)/5 =  x + 2*x^2/2! + 22*x^3/3! + 430*x^4/4! + 12330*x^5/5! + 469890*x^6/6! + 22461430*x^7/7! + 1296581230*x^8/8! + 87992661450*x^9 + 6882286750850*x^10 + 610926310310550*x^11 + 60801822260178350*x^12 +...
Further, A( (2*A(x) + 3*x)/5 ) = (A'(x) - 1)/(2*A'(x) + 3), which begins
A( (2*A(x) + 3*x)/5 ) = x + 7*x^2/2! + 107*x^3/3! + 2665*x^4/4! + 93005*x^5/5! + 4201015*x^6/6! + 233920155*x^7/7! + 15535390105*x^8/8! + 1201670102125*x^9/9! + 106329616511975*x^10/10! + 10612821894707675*x^11/11! + 1181462628283585225*x^12/12! +...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[_] = 0;
    Do[A[x_] = -3x/2 + 5/2 InverseSeries[x-Integrate[2A[x], x] + O[x]^m], {m}];
    CoefficientList[A[x], x] * Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n, p=2, q=3) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n, 2, 3), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n, p=2, q=3) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n, 2, 3), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=2; q=3; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral 2*A(x) dx) = x + Integral 3*A(x) dx.
(2) A(x) = x + 5 * G( (2*A(x) + 3*x)/5 ), where G(x) = Integral A(x) dx.
(3) A(x) = -3*x/2 + 5/2 * Series_Reversion(x - Integral 2*A(x) dx).
(4) A( (2*A(x) + 3*x)/5 ) = (A'(x) - 1)/(2*A'(x) + 3).
(5) A'(x - Integral 2*A(x) dx) = (1 + 3*A(x))/(1 - 2*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k * 5^(n-k-1).

A280574 E.g.f. satisfies: A(x - Integral 3*A(x) dx) = x + Integral 2*A(x) dx.

Original entry on oeis.org

1, 5, 70, 1775, 66175, 3283475, 204594175, 15411893450, 1366394303500, 139767921720875, 16243630181913625, 2118892887756520250, 307173379745256857875, 49084564051462443496250, 8586127214178418541668750, 1634509914502001105016284375, 336910750825106071274158853125, 74862327518834451026921878887500, 17862833297180486514281227128971875, 4561279298680105599840369905594562500
Offset: 1

Views

Author

Paul D. Hanna, Jan 05 2017

Keywords

Examples

			E.g.f.: A(x) = x + 5*x^2/2! + 70*x^3/3! + 1775*x^4/4! + 66175*x^5/5! + 3283475*x^6/6! + 204594175*x^7/7! + 15411893450*x^8/8! + 1366394303500*x^9/9! + 139767921720875*x^10/10! + 16243630181913625*x^11/11! + 2118892887756520250*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 3*G(x)) = x + 2*G(x) where
G(x) = x^2/2! + 5*x^3/3! + 70*x^4/4! + 1775*x^5/5! + 66175*x^6/6! + 3283475*x^7/7! + 204594175*x^8/8! + 15411893450*x^9/9! + 1366394303500*x^10/10! + 139767921720875*x^11/11! + 16243630181913625*x^12/12! +...
Also, A(x) = x + 5 * G( (3*A(x) + 2*x)/5 ).
RELATED SERIES.
We have (3*A(x) + 2*x)/5 = Series_Reversion( x - Integral 3*A(x) dx ), where
(3*A(x) + 2*x)/5 = x + 3*x^2/2! + 42*x^3/3! + 1065*x^4/4! + 39705*x^5/5! + 1970085*x^6/6! + 122756505*x^7/7! + 9247136070*x^8/8! + 819836582100*x^9/9! + 83860753032525*x^10/10! + 9746178109148175*x^11/11! + 1271335732653912150*x^12/12! +...
Further, A( (3*A(x) + 2*x)/5 ) = (A'(x) - 1)/(3*A'(x) + 2), which begins
A( (3*A(x) + 2*x)/5 ) = x + 8*x^2/2! + 157*x^3/3! + 5075*x^4/4! + 230905*x^5/5! + 13636085*x^6/6! + 994743280*x^7/7! + 86697077570*x^8/8! + 8813260716925*x^9/9! + 1026216275720525*x^10/10! + 134948279040712300*x^11/11! + 19814992125974741525*x^12/12! +...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[_] = 0;
    Do[A[x_] = -2x/3 + 5/3 InverseSeries[x-Integrate[3A[x], x] + O[x]^m], {m}];
    CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
    {a(n, p=3, q=2) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
    for(n=1, 30, print1(a(n, 3, 2), ", "))
    
  • PARI
    /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
    {a(n, p=3, q=2) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
    for(n=1, 30, print1(a(n, 3, 2), ", "))
    
  • PARI
    /* Informal code to generate the first N terms: */
    {N=20; p=3; q=2; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}

Formula

E.g.f. A(x) satisfies:
(1) A(x - Integral 3*A(x) dx) = x + Integral 2*A(x) dx.
(2) A(x) = x + 5 * G( (3*A(x) + 2*x)/5 ), where G(x) = Integral A(x) dx.
(3) A(x) = -2*x/3 + 5/3 * Series_Reversion(x - Integral 3*A(x) dx).
(4) A( (3*A(x) + 2*x)/5 ) = (A'(x) - 1)/(3*A'(x) + 2).
(5) A'(x - Integral 3*A(x) dx) = (1 + 2*A(x))/(1 - 3*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 3^k * 5^(n-k-1).
Showing 1-10 of 14 results. Next