cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277432 E.g.f.: sinh(sqrt(2)*x)/(sqrt(2)*(1-x)).

Original entry on oeis.org

0, 1, 2, 8, 32, 164, 984, 6896, 55168, 496528, 4965280, 54618112, 655417344, 8520425536, 119285957504, 1789289362688, 28628629803008, 486686706651392, 8760360719725056, 166446853674776576, 3328937073495531520, 69907678543406162944, 1537968927954935584768
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 14 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,8]; [0] cat [n le 3 select I[n] else n*Self(n-1) + 2*Self(n-2) - 2*(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 19 2018
  • Maple
    f:= gfun:-rectoproc({a(n) = n*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3),a(0)=0,a(1)=1,a(2)=2},a(n),remember):
    map(f, [$0..20]); # Robert Israel, Oct 30 2016
  • Mathematica
    Round@Table[(Gamma[n + 1, Sqrt[2]] Exp[Sqrt[2]] - Gamma[n + 1, -Sqrt[2]]/Exp[Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
    Expand@Table[SeriesCoefficient[Sinh[Sqrt[2] x]/(Sqrt[2] (1 - x)), {x, 0, n}] n!, {n, 0, 20}]
  • PARI
    x='x+O('x^30); concat([0], round(Vec(serlaplace(sinh(sqrt(2)*x)/( sqrt(2)*(1-x)))))) \\ G. C. Greubel, Aug 19 2018
    

Formula

a(n) = (Gamma(n+1, sqrt(2))*exp(sqrt(2)) - Gamma(n+1, -sqrt(2))/exp(sqrt(2))) / (2*sqrt(2)).
a(n) ~ sqrt(Pi)*sinh(sqrt(2))*n^(n+1/2)*exp(-n).
D-finite with recurrence: a(n) = n*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3).
Gamma(n+1, sqrt(2))*exp(sqrt(2)) = A277431(n) + sqrt(2)*a(n).
Gamma(n+1, -sqrt(2))/exp(sqrt(2)) = A277431(n) - sqrt(2)*a(n).
For n > 0, a(2*n) = 2*n*a(2*n-1).