A277449 Numbers n such that there is exactly one nontrivial square n-gonal number.
34, 74, 100, 130, 202, 244, 290, 394, 452, 514, 650, 724, 802, 970, 1060, 1154, 1354, 1460, 1570, 1802, 1924, 2050, 2314, 2452, 2594, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4234, 4420, 4610, 5002, 5204, 5410, 5834, 6052, 6274, 6730, 6964, 7202, 7690, 7940, 8194, 8714, 8980, 9250, 9802, 10084, 10370, 10954, 11252, 11554, 12170, 12484, 12802, 13450, 13780
Offset: 1
Keywords
Examples
For n = 34, the square 34-gonal numbers are 0, 1, 196. For n = 74, the square 74-gonal numbers are 0, 1, 2601. For n = 100, the square 100-gonal numbers are 0, 1, 100.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..238
Programs
-
GAP
G:=[];; for g in [5..100000] do for r in [1..5000] do if 2*g-4=r^2 then Add(G,g); fi; od; od; G; Length(G); F:=List(G,g->[g,DivisorsInt((g-4)^2)]);; N:=List([1..Length(F)], i->List([1..Length(F[i][2])],j->[F[i][1],((F[i][1]-4)*(F[i][1]-4+2*F[i][2][j])+F[i][2][j]^2)/((4*F[i][1]-8)*F[i][2][j])] ) );; N1:=Filtered(List(List([1..Length(N)],k->Filtered(N[k], l->IsPosInt(l[2]))),Set),o->Length(o)>=2); N2:=Set(Flat(List([1..Length(N1)],i->List([1..Length(N1[i])],j->N1[i][j][1]))));
Comments