cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277449 Numbers n such that there is exactly one nontrivial square n-gonal number.

Original entry on oeis.org

34, 74, 100, 130, 202, 244, 290, 394, 452, 514, 650, 724, 802, 970, 1060, 1154, 1354, 1460, 1570, 1802, 1924, 2050, 2314, 2452, 2594, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4234, 4420, 4610, 5002, 5204, 5410, 5834, 6052, 6274, 6730, 6964, 7202, 7690, 7940, 8194, 8714, 8980, 9250, 9802, 10084, 10370, 10954, 11252, 11554, 12170, 12484, 12802, 13450, 13780
Offset: 1

Views

Author

Muniru A Asiru, Oct 16 2016

Keywords

Comments

There are infinitely many squares that are triangular, pentagonal, hexagonal, etc. Also there is no square 10-gonal number, 20-gonal number, 52-gonal number, 64-gonal number, etc. greater than 1 (see A188896). Other than the trivial square n-gonal numbers 0 and 1, there is exactly one square 34-gonal number, one square 74-gonal number, one square 100-gonal number, one square 130-gonal number, etc.

Examples

			For n = 34, the square 34-gonal numbers are 0, 1, 196.
For n = 74, the square 74-gonal numbers are 0, 1, 2601.
For n = 100, the square 100-gonal numbers are 0, 1, 100.
		

Crossrefs

Programs

  • GAP
    G:=[];; for g in [5..100000]  do for r in [1..5000] do if 2*g-4=r^2 then Add(G,g); fi; od; od; G; Length(G);
    F:=List(G,g->[g,DivisorsInt((g-4)^2)]);;
    N:=List([1..Length(F)], i->List([1..Length(F[i][2])],j->[F[i][1],((F[i][1]-4)*(F[i][1]-4+2*F[i][2][j])+F[i][2][j]^2)/((4*F[i][1]-8)*F[i][2][j])] ) );;
    N1:=Filtered(List(List([1..Length(N)],k->Filtered(N[k], l->IsPosInt(l[2]))),Set),o->Length(o)>=2);
    N2:=Set(Flat(List([1..Length(N1)],i->List([1..Length(N1[i])],j->N1[i][j][1]))));