A277478 E.g.f.: -cosh(x)*LambertW(-x).
0, 1, 2, 12, 76, 720, 8766, 131096, 2319416, 47361600, 1096018330, 28344108672, 810053677764, 25352185339520, 862335856149782, 31674845755622400, 1249527587684729584, 52687201308036059136, 2364751154207006978994, 112562199977955164819456
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Programs
-
Mathematica
CoefficientList[Series[-Cosh[x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]! Table[Sum[(1 + (-1)^(n-k)) * Binomial[n, k] * k^(k-1)/2, {k, 1, n}], {n, 0, 20}]
-
PARI
x='x+O('x^50); concat([0], Vec(serlaplace(-cosh(x)*lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
Formula
a(n) = Sum_{k=1..n} (1 + (-1)^(n-k)) * binomial(n,k) * k^(k-1)/2.
a(n) ~ cosh(exp(-1)) * n^(n-1).