cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277487 a(n) = number of primes encountered before reaching (n^2)-1 when starting from k = ((n+1)^2)-1 and iterating map k -> k - A002828(k).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 2, 0, 3, 2, 0, 3, 0, 2, 0, 1, 4, 2, 3, 2, 4, 2, 0, 3, 3, 2, 5, 3, 4, 3, 3, 3, 2, 4, 2, 2, 4, 3, 3, 3, 6, 3, 1, 3, 4, 2, 6, 3, 3, 2, 5, 5, 5, 5, 4, 3, 7, 4, 4, 6, 4, 2, 4, 6, 5, 5, 5, 4, 7, 4, 4, 7, 4, 0, 5, 6, 7, 4, 4, 9, 4, 5, 2, 6, 6, 7, 11, 3, 6, 4, 9, 5, 7, 7, 7, 6, 8, 8, 7, 6, 4, 6, 5, 7, 8, 5, 9, 8, 8, 5, 12, 7, 5, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

Number of primes on row n of A276574, after the initial zero-row.
Note how for the most n in range 1..10000, a(n) < A277486(n), even though for the most n in the same range A277890(n) < A277891(n). In range n=1..10000, there are only 209 cases where a(n) >= A277486(n).
On the other hand, when a(n) is compared to A277488(n), there is no such marked bias.

Examples

			For n=3, starting from k = ((3+1)^2)-1, and iterating k -> A255131(k), yields 15 -> 11 -> 8, where the iteration stops as the next lower number one less than a square has been reached. Of these numbers only 11 is a prime, thus a(3) = 1.
		

Crossrefs

Programs

  • PARI
    istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1
    isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7
    A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From Charles R Greathouse IV, Jul 19 2011
    A277487(n) = { my(orgk = ((n+1)^2)-1); my(k = orgk, s = 0); while(((k == orgk) || !issquare(1+k)), s = s + if(isprime(k),1,0); k = k - A002828(k)); s; };
    for(n=1, 10000, write("b277487.txt", n, " ", A277487(n)));
    
  • Scheme
    (define (A277487 n) (let ((org_k (- (A000290 (+ 1 n)) 1))) (let loop ((k org_k) (s 0)) (if (and (< k org_k) (= 1 (A010052 (+ 1 k)))) s (loop (- k (A002828 k)) (+ s (A010051 k)))))))

Formula

a(n) <= A277891(n).