cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277488 a(n) = number of integers one less than a prime encountered before reaching (n^2)-1 when starting from k = ((n+1)^2)-1 and iterating map k -> k - A002828(k).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 0, 3, 2, 3, 2, 1, 1, 2, 1, 3, 2, 3, 1, 2, 4, 4, 1, 2, 3, 2, 2, 3, 4, 3, 3, 4, 3, 4, 3, 2, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 3, 4, 6, 4, 6, 8, 4, 4, 3, 5, 7, 3, 7, 2, 6, 6, 4, 7, 7, 4, 5, 7, 4, 8, 6, 4, 4, 3, 6, 11, 4, 5, 5, 9, 6, 3, 6, 7, 6, 9, 9, 8, 11, 6, 5, 5, 7, 8, 7, 7, 5, 8, 9, 5, 7, 6, 5, 6, 7, 6, 8, 9, 6, 9, 6, 15, 8, 10, 9, 7, 10, 6, 6, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

Only 325 cases in range n=1..10000 where a(n) >= A277486(n). See also comments in A277487.

Examples

			For n=6, we start iterating from k = ((6+1)^2)-1 = 48, and then 48 - A002828(48) = 45, 45 - A002828(45) = 43, 43 - A002828(43) = 40, 40 - A002828(40) = 38, and 38 - A002828(38) = 35 (which is 6^2 - 1), and when we add one to each, only 41 is prime, thus a(6) = 1.
		

Crossrefs

Programs

  • PARI
    istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1
    isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7
    A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From Charles R Greathouse IV, Jul 19 2011
    A277488(n) = { my(orgk = ((n+1)^2)-1); my(k = orgk, s = 0); while(((k == orgk) || !issquare(1+k)), s = s + if(isprime(1+k),1,0); k = k - A002828(k)); s; };
    for(n=1, 10000, write("b277488.txt", n, " ", A277488(n)));
    
  • Scheme
    (define (A277488 n) (let ((org_k (- (A000290 (+ 1 n)) 1))) (let loop ((k org_k) (s 0)) (if (and (< k org_k) (= 1 (A010052 (+ 1 k)))) s (loop (- k (A002828 k)) (+ s (A010051 (+ 1 k))))))))

Formula

For all n >= 1, a(n) <= A277890(n).