cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277542 a(n) = denominator((n^2 + 3*n + 2)/n^3).

Original entry on oeis.org

1, 2, 27, 32, 125, 27, 343, 256, 729, 250, 1331, 864, 2197, 343, 3375, 2048, 4913, 1458, 6859, 4000, 9261, 1331, 12167, 6912, 15625, 4394, 19683, 10976, 24389, 3375, 29791, 16384, 35937, 9826, 42875, 23328, 50653, 6859, 59319, 32000, 68921, 18522, 79507
Offset: 1

Views

Author

Colin Barker, Oct 19 2016

Keywords

Comments

Also, a(n) = denominator((n+2)/n^3). - Danny Rorabaugh, Sep 30 2017

Crossrefs

Cf. A276805.

Programs

  • Mathematica
    Table[Denominator[(n^2 + 3 n + 2)/n^3], {n, 43}] (* Michael De Vlieger, Feb 25 2017 *)
  • PARI
    a(n) = denominator((n^2 + 3*n + 2)/n^3) \\ Colin Barker, Oct 19 2016

Formula

a(n) = 4*a(n-8) - 6*a(n-16) + 4*a(n-24) - a(n-32) for n > 32.
G.f.: x*(1 + 2*x + 27*x^2 + 32*x^3 + 125*x^4 + 27*x^5 + 343*x^6 + 256*x^7 + 725*x^8 + 242*x^9 + 1223*x^10 + 736*x^11 + 1697*x^12 + 235*x^13 + 2003*x^14 + 1024*x^15 + 2003*x^16 + 470*x^17 + 1697*x^18 + 736*x^19 + 1223*x^20 + 121*x^21 + 725*x^22 + 256*x^23 + 343*x^24 + 54*x^25 + 125*x^26 + 32*x^27 + 27*x^28 + x^29 + x^30) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^4*(1 + x^4)^4).
a(n) = a(n-8)*n^3/(n-8)^3, for n > 8. - Gionata Neri, Feb 25 2017
a(n) = n^3 / 2^min(v2(n+2),3*v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n. - Danny Rorabaugh, Sep 30 2017