A277550 Numbers k such that k/5^m == 1 (mod 5), where 5^m is the greatest power of 5 that divides k.
1, 5, 6, 11, 16, 21, 25, 26, 30, 31, 36, 41, 46, 51, 55, 56, 61, 66, 71, 76, 80, 81, 86, 91, 96, 101, 105, 106, 111, 116, 121, 125, 126, 130, 131, 136, 141, 146, 150, 151, 155, 156, 161, 166, 171, 176, 180, 181, 186, 191, 196, 201, 205, 206, 211, 216, 221
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[5, 1] (* A277550 *) p[5, 2] (* A277551 *) p[5, 3] (* A277555 *) p[5, 4] (* A277548 *)
-
PARI
isok(n) = n/5^valuation(n, 5) % 5 == 1; \\ Michel Marcus, Oct 21 2016
Comments