A277551 Numbers k such that k/5^m == 2 (mod 5), where 5^m is the greatest power of 5 that divides k.
2, 7, 10, 12, 17, 22, 27, 32, 35, 37, 42, 47, 50, 52, 57, 60, 62, 67, 72, 77, 82, 85, 87, 92, 97, 102, 107, 110, 112, 117, 122, 127, 132, 135, 137, 142, 147, 152, 157, 160, 162, 167, 172, 175, 177, 182, 185, 187, 192, 197, 202, 207, 210, 212, 217, 222, 227
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[5, 1] (* A277550 *) p[5, 2] (* A277551 *) p[5, 3] (* A277555 *) p[5, 4] (* A277548 *)
-
PARI
isok(n) = n/5^valuation(n, 5) % 5 == 2; \\ Michel Marcus, Oct 21 2016
Comments