A277555 Numbers k such that k/5^m == 3 (mod 5), where 5^m is the greatest power of 5 that divides k.
3, 8, 13, 15, 18, 23, 28, 33, 38, 40, 43, 48, 53, 58, 63, 65, 68, 73, 75, 78, 83, 88, 90, 93, 98, 103, 108, 113, 115, 118, 123, 128, 133, 138, 140, 143, 148, 153, 158, 163, 165, 168, 173, 178, 183, 188, 190, 193, 198, 200, 203, 208, 213, 215, 218, 223, 228
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[5, 1] (* A277550 *) p[5, 2] (* A277551 *) p[5, 3] (* A277555 *) p[5, 4] (* A277548 *)
-
PARI
isok(n) = n/5^valuation(n, 5) % 5 == 3; \\ Michel Marcus, Oct 20 2016
Comments