cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277562 Numbers of the form c(x_1)^c(x_2)^...^c(x_k) where each c(i) = A007916(i) is a non-perfect-power, k >= 2, and the exponents are nested from the right.

Original entry on oeis.org

16, 81, 256, 512, 625, 1296, 2401, 6561, 10000, 14641, 19683, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 614656, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1679616, 1874161, 1953125, 2085136, 2313441, 2560000, 2825761, 3111696, 3418801
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2016

Keywords

Comments

Non-perfect-powers, or NPPs (A007916), are numbers whose prime multiplicities are relatively prime. As discussed in A007916, the expansion of a positive integer into a tower of NPPs is unique and always possible. 65536=2^2^2^2 is the smallest number that requires a tower of height more than 3.

Examples

			       16 = 2^2^2        81 = 3^2^2       256 = 2^2^3       512 = 2^3^2
      625 = 5^2^2      1296 = 6^2^2      2401 = 7^2^2      6561 = 3^2^3
    10000 = 10^2^2    14641 = 11^2^2    19683 = 3^3^2     20736 = 12^2^2
    28561 = 13^2^2    38416 = 14^2^2    50625 = 15^2^2
    65536 = 2^2^2^2   83521 = 17^2^2   104976 = 18^2^2   130321 = 19^2^2
   160000 = 20^2^2   194481 = 21^2^2   234256 = 22^2^2   279841 = 23^2^2
   331776 = 24^2^2   390625 = 5^2^3    456976 = 26^2^2   614656 = 28^2^2
   707281 = 29^2^2   810000 = 30^2^2   923521 = 31^2^2  1185921 = 33^2^2
  1336336 = 34^2^2  1500625 = 35^2^2  1679616 = 6^2^3   1874161 = 37^2^2
  1953125 = 5^3^2   2085136 = 38^2^2  2313441 = 39^2^2  2560000 = 40^2^2
  2825761 = 41^2^2  3111696 = 42^2^2  3418801 = 43^2^2  3748096 = 44^2^2
  4100625 = 45^2^2  4477456 = 46^2^2  4879681 = 47^2^2  5308416 = 48^2^2
  5764801 = 7^2^3   6250000 = 50^2^2  6765201 = 51^2^2  7311616 = 52^2^2
  7890481 = 53^2^2  8503056 = 54^2^2  9150625 = 55^2^2  9834496 = 56^2^2
		

Crossrefs

Cf. A007916, A001597, A164336, A164337, A106490 (Quetian Superfactorization).

Programs

  • Mathematica
    radicalQ[1]:=False;
    radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1];
    hyperfactor[1]:={};
    hyperfactor[n_?radicalQ]:={n};
    hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All,2]]},Prepend[hyperfactor[g],Product[Apply[Power[#1,#2/g]&,r],{r,FactorInteger[n]}]]];
    Select[Range[10^6],Length[hyperfactor[#]]>2&]

Extensions

Edited by N. J. A. Sloane, Nov 09 2016
Offset changed to 1 by David A. Corneth, Apr 30 2024