A277562 Numbers of the form c(x_1)^c(x_2)^...^c(x_k) where each c(i) = A007916(i) is a non-perfect-power, k >= 2, and the exponents are nested from the right.
16, 81, 256, 512, 625, 1296, 2401, 6561, 10000, 14641, 19683, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 614656, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1679616, 1874161, 1953125, 2085136, 2313441, 2560000, 2825761, 3111696, 3418801
Offset: 1
Keywords
Examples
16 = 2^2^2 81 = 3^2^2 256 = 2^2^3 512 = 2^3^2 625 = 5^2^2 1296 = 6^2^2 2401 = 7^2^2 6561 = 3^2^3 10000 = 10^2^2 14641 = 11^2^2 19683 = 3^3^2 20736 = 12^2^2 28561 = 13^2^2 38416 = 14^2^2 50625 = 15^2^2 65536 = 2^2^2^2 83521 = 17^2^2 104976 = 18^2^2 130321 = 19^2^2 160000 = 20^2^2 194481 = 21^2^2 234256 = 22^2^2 279841 = 23^2^2 331776 = 24^2^2 390625 = 5^2^3 456976 = 26^2^2 614656 = 28^2^2 707281 = 29^2^2 810000 = 30^2^2 923521 = 31^2^2 1185921 = 33^2^2 1336336 = 34^2^2 1500625 = 35^2^2 1679616 = 6^2^3 1874161 = 37^2^2 1953125 = 5^3^2 2085136 = 38^2^2 2313441 = 39^2^2 2560000 = 40^2^2 2825761 = 41^2^2 3111696 = 42^2^2 3418801 = 43^2^2 3748096 = 44^2^2 4100625 = 45^2^2 4477456 = 46^2^2 4879681 = 47^2^2 5308416 = 48^2^2 5764801 = 7^2^3 6250000 = 50^2^2 6765201 = 51^2^2 7311616 = 52^2^2 7890481 = 53^2^2 8503056 = 54^2^2 9150625 = 55^2^2 9834496 = 56^2^2
Links
- David A. Corneth, Table of n, a(n) for n = 1..10025 (terms <= 10^16)
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
Programs
-
Mathematica
radicalQ[1]:=False; radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1]; hyperfactor[1]:={}; hyperfactor[n_?radicalQ]:={n}; hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All,2]]},Prepend[hyperfactor[g],Product[Apply[Power[#1,#2/g]&,r],{r,FactorInteger[n]}]]]; Select[Range[10^6],Length[hyperfactor[#]]>2&]
Extensions
Edited by N. J. A. Sloane, Nov 09 2016
Offset changed to 1 by David A. Corneth, Apr 30 2024
Comments