A277567 Numbers k such that k/6^m == 1 (mod 6), where 6^m is the greatest power of 6 that divides k.
1, 6, 7, 13, 19, 25, 31, 36, 37, 42, 43, 49, 55, 61, 67, 73, 78, 79, 85, 91, 97, 103, 109, 114, 115, 121, 127, 133, 139, 145, 150, 151, 157, 163, 169, 175, 181, 186, 187, 193, 199, 205, 211, 216, 217, 222, 223, 229, 235, 241, 247, 252, 253, 258, 259, 265
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[6, 1] (* A277567 *) p[6, 2] (* A277568 *) p[6, 3] (* A277569 *) p[6, 4] (* A277570 *) p[6, 5] (* A277571 *) Select[Range[300],Mod[#/6^IntegerExponent[#,6],6]==1&] (* Harvey P. Dale, Sep 27 2023 *)
-
PARI
is(n)=(n/6^valuation(n,6))%6==1 \\ Charles R Greathouse IV, Nov 03 2016
Formula
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
Comments