cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277576 a(1)=1; thereafter a(n) = A007916(a(n-1)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 15, 20, 26, 34, 43, 53, 63, 74, 86, 98, 111, 126, 142, 159, 177, 195, 214, 235, 258, 281, 305, 330, 356, 383, 411, 439, 468, 498, 530, 562, 595, 629, 663, 698, 734, 770, 807, 845, 883, 922, 962, 1003, 1045, 1087, 1130, 1174, 1218, 1263, 1309, 1356, 1404, 1453, 1502, 1552, 1603, 1654, 1706, 1759
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2016

Keywords

Comments

Non-perfect-powers (A007916) are numbers such that the exponents in their prime factorizations have GCD equal to 1. For each n we can construct a plane tree by replacing all positive integers at any level with their corresponding planar factorization sequences (A277564), and repeating this replacement until no numbers are left. The result will be a unique "pure" sequence or plane tree. Under this correspondence a(n) is the path tree ((((((...)))))) = string of n consecutive open brackets followed by the same number of closed brackets.

Examples

			The first forty plane trees:
()         11(((((())))))      ((()()()))         (((((((()())))))))
2(())         ((()(())))        ((((()(())))))     (()((())))
3((()))       (((())()))        (((((())()))))     ((((()))()))
(()())       ((((()()))))      ((((((()())))))) 34(((((((((())))))))))
5(((())))   15((((((()))))))    (((()))())         (((())(())))
((()()))     (()()())        26((((((((())))))))) ((()())())
7((((()))))   (((()(()))))      ((())(()))         ((((()()()))))
(()(()))     ((((())())))      (((()()())))       ((((((()(())))))))
((())())     (((((()())))))    (((((()(()))))))   (((((((())()))))))
(((()()))) 20(((((((())))))))  ((((((())())))))   ((((((((()()))))))))
		

Crossrefs

Cf. A007916, A277564, A276625, A004111 (rooted trees), A007097 (rooted paths).

Programs

  • Mathematica
    radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1];
    rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&];
    nn=2000;Scan[rad,Range[nn]];NestWhileList[rad,1,#
    				
  • Python
    from itertools import islice
    from sympy import mobius, integer_nthroot
    def A277576_gen(): # generator of terms
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        a = 1
        while True:
            yield a
            a = iterfun(lambda x:f(x)+a,a)
    A277576_list = list(islice(A277576_gen(),40)) # Chai Wah Wu, Nov 21 2024

Extensions

Edited by N. J. A. Sloane, Nov 09 2016