A277576 a(1)=1; thereafter a(n) = A007916(a(n-1)).
1, 2, 3, 5, 7, 11, 15, 20, 26, 34, 43, 53, 63, 74, 86, 98, 111, 126, 142, 159, 177, 195, 214, 235, 258, 281, 305, 330, 356, 383, 411, 439, 468, 498, 530, 562, 595, 629, 663, 698, 734, 770, 807, 845, 883, 922, 962, 1003, 1045, 1087, 1130, 1174, 1218, 1263, 1309, 1356, 1404, 1453, 1502, 1552, 1603, 1654, 1706, 1759
Offset: 1
Keywords
Examples
The first forty plane trees: () 11(((((()))))) ((()()())) (((((((()()))))))) 2(()) ((()(()))) ((((()(()))))) (()((()))) 3((())) (((())())) (((((())())))) ((((()))())) (()()) ((((()())))) ((((((()())))))) 34(((((((((()))))))))) 5(((()))) 15((((((())))))) (((()))()) (((())(()))) ((()())) (()()()) 26((((((((())))))))) ((()())()) 7((((())))) (((()(())))) ((())(())) ((((()()())))) (()(())) ((((())()))) (((()()()))) ((((((()(()))))))) ((())()) (((((()()))))) (((((()(())))))) (((((((())())))))) (((()()))) 20(((((((()))))))) ((((((())()))))) ((((((((()()))))))))
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..2480 from Gus Wiseman)
Programs
-
Mathematica
radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1]; rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&]; nn=2000;Scan[rad,Range[nn]];NestWhileList[rad,1,#
-
Python
from itertools import islice from sympy import mobius, integer_nthroot def A277576_gen(): # generator of terms def iterfun(f,n=0): m, k = n, f(n) while m != k: m, k = k, f(k) return m def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) a = 1 while True: yield a a = iterfun(lambda x:f(x)+a,a) A277576_list = list(islice(A277576_gen(),40)) # Chai Wah Wu, Nov 21 2024
Extensions
Edited by N. J. A. Sloane, Nov 09 2016
Comments