cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277579 Number of partitions of n for which the number of even parts is equal to the positive alternating sum of the parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 13, 15, 19, 25, 31, 38, 48, 59, 74, 90, 111, 136, 166, 201, 246, 297, 357, 431, 522, 621, 745, 892, 1063, 1263, 1503, 1780, 2109, 2491, 2941, 3463, 4077, 4783, 5616, 6576, 7689, 8981, 10486, 12207, 14209, 16516, 19178, 22231
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Oct 20 2016

Keywords

Comments

In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, EP gives the number of even terms of a finite sequence of positive integers.
For the specified value of n, the second Maple program lists the partitions of n counted by a(n).
Also the number of integer partitions of n with as many even parts as odd parts in the conjugate partition. - Gus Wiseman, Jul 26 2021

Examples

			a(9) = 6: [2,1,1,1,1,1,1,1], [3,2,1,1,1,1], [3,3,2,1], [4,2,2,1], [4,3,1,1], [5,4].
a(10) = 7: [1,1,1,1,1,1,1,1,1,1], [3,2,2,1,1,1], [3,3,1,1,1,1], [4,2,1,1,1,1], [4,3,2,1], [5,5], [6,4].
a(11) = 9: [2,1,1,1,1,1,1,1,1,1], [3,2,1,1,1,1,1,1], [3,3,2,1,1,1], [3,3,3,2], [4,2,2,1,1,1], [4,3,1,1,1,1], [5,2,2,2], [5,4,1,1], [6,5].
		

Crossrefs

The sign-sensitive version is A035457 (aerated version of A000009).
Comparing odd parts to odd conjugate parts gives A277103.
Comparing product of parts to product of conjugate parts gives A325039.
Comparing the rev-alt sum to that of the conjugate gives A345196.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: EP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 0 then ct := ct+1 else  end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = EP(P[k]) then c := c+1 else  end if end do: c end proc: seq(a(n), n = 0 .. 30);
    n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: EP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 0 then ct := ct+1 else  end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = EP(P[k]) then C := `union`(C, {P[k]}) else  end if end do: C;
    # alternative Maple program:
    b:= proc(n, i, s, t) option remember; `if`(n=0,
          `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+
          `if`(i>n, 0, b(n-i, i, s+t*i-irem(i+1, 2), -t))))
        end:
    a:= n-> b(n$2, 0, 1):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i+1, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 21 2016, translated from Maple *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jul 26 2021 *)
  • Sage
    def a(n):
        AS = lambda s: abs(sum((-1)^i*t for i,t in enumerate(s)))
        EP = lambda s: sum((t+1)%2 for t in s)
        return sum(AS(p) == EP(p) for p in Partitions(n))
    print([a(n) for n in (0..30)]) # Peter Luschny, Oct 21 2016