cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277624 Composite numbers which have a dominant prime factor. A prime factor p of n is dominant if floor(sqrt(p)) > (n/p).

Original entry on oeis.org

22, 26, 34, 38, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 116, 118, 122, 123, 124, 129, 134, 141, 142, 146, 148, 158, 159, 164, 166, 172, 177, 178, 183, 185, 188, 194, 201, 202, 205, 206, 212, 213, 214, 215, 218, 219, 226, 235, 236, 237, 244
Offset: 1

Views

Author

Peter Luschny, Oct 24 2016

Keywords

Comments

From David A. Corneth, Oct 26 2016 and Oct 27 2016: (Start)
Numbers of the form k * p where p > (k + 1)^2 and p prime and k > 1.
If n has a dominant prime factor, it's A006530(n).
All primes p > 4 have the property that floor(sqrt(A006530(p))) = floor(sqrt(p)) > (p/A006530(p)) = 1.
A063763 is a supersequence.
(End)

Examples

			133230 is in this sequence because 133230 = 2*3*5*4441 and 2*3*5 = 30 < 66 = floor(sqrt(4441)).
		

Crossrefs

Programs

  • Maple
    is_a := proc(n) max(numtheory:-factorset(n)):
    not isprime(n) and floor(sqrt(%)) > (n/%) end:
    select(is_a, [$1..244]);
  • Mathematica
    Select[Select[Range@ 244, CompositeQ], Function[n, Total@ Boole@ Map[Function[p, Floor@ Sqrt@ p > n/p], FactorInteger[n][[All, 1]]] > 0]] (* Michael De Vlieger, Oct 27 2016 *)
  • PARI
    upto(n) = my(l=List()); for(k=2, sqrtnint(n, 3), forprime(p=(k+1)^2, n\k, listput(l,k*p))); listsort(l); l
    is(n) = if(!isprime(n)&&n>1, f=factor(n)[, 1];sqrtint(f[#f]) > n/f[#f], 0) \\ David A. Corneth, Oct 26 2016
  • Python
    from sympy import primefactors
    from gmpy2 import is_prime, isqrt
    A277624_list = []
    for n in range(2,10**3):
        if not is_prime(n):
            for p in primefactors(n):
                if isqrt(p)*p > n:
                    A277624_list.append(n)
                    break # Chai Wah Wu, Oct 25 2016
    

Formula

Conjecture: A092487(a(n)) = A006530(a(n)). - David A. Corneth, Oct 27 2016