A277624 Composite numbers which have a dominant prime factor. A prime factor p of n is dominant if floor(sqrt(p)) > (n/p).
22, 26, 34, 38, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 116, 118, 122, 123, 124, 129, 134, 141, 142, 146, 148, 158, 159, 164, 166, 172, 177, 178, 183, 185, 188, 194, 201, 202, 205, 206, 212, 213, 214, 215, 218, 219, 226, 235, 236, 237, 244
Offset: 1
Examples
133230 is in this sequence because 133230 = 2*3*5*4441 and 2*3*5 = 30 < 66 = floor(sqrt(4441)).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
is_a := proc(n) max(numtheory:-factorset(n)): not isprime(n) and floor(sqrt(%)) > (n/%) end: select(is_a, [$1..244]);
-
Mathematica
Select[Select[Range@ 244, CompositeQ], Function[n, Total@ Boole@ Map[Function[p, Floor@ Sqrt@ p > n/p], FactorInteger[n][[All, 1]]] > 0]] (* Michael De Vlieger, Oct 27 2016 *)
-
PARI
upto(n) = my(l=List()); for(k=2, sqrtnint(n, 3), forprime(p=(k+1)^2, n\k, listput(l,k*p))); listsort(l); l is(n) = if(!isprime(n)&&n>1, f=factor(n)[, 1];sqrtint(f[#f]) > n/f[#f], 0) \\ David A. Corneth, Oct 26 2016
-
Python
from sympy import primefactors from gmpy2 import is_prime, isqrt A277624_list = [] for n in range(2,10**3): if not is_prime(n): for p in primefactors(n): if isqrt(p)*p > n: A277624_list.append(n) break # Chai Wah Wu, Oct 25 2016
Comments