A277631 Number of aperiodic necklaces (Lyndon words) with k<=6 black beads and n-k white beads.
1, 2, 1, 2, 3, 6, 9, 18, 29, 51, 82, 135, 205, 315, 458, 662, 925, 1281, 1724, 2305, 3014, 3911, 4992, 6326, 7905, 9820, 12059, 14724, 17811, 21435, 25586, 30408, 35885, 42175, 49273, 57352, 66401, 76627, 88012, 100781, 114928, 130697, 148074, 167343, 188483, 211798, 237282, 265260, 295717, 329025, 365160
Offset: 0
Examples
a(6)=9. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, BBBWBW and BBBBBW.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 0, 2, -2, -2, 3, 3, -2, -2, 2, 0, -2, -1, 2, 1, -1).
Crossrefs
Programs
-
Mathematica
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *) gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1 (* Here we have the case m=6 *)
Formula
G.f.: (1 + x - 3*x^2 - 2*x^3 + 3*x^4 + 4*x^5-x^6 + 2*x^7 + 9*x^8 + 6*x^9 + 7*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + 6*x^15 + 6*x^16 + x^17-3*x^18 + x^20)/( (-1+x)^6*(1+x)^3*(1-x+x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4) ).