cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277637 Partial sums of A007004.

Original entry on oeis.org

1, 4, 34, 454, 7384, 133510, 2583958, 52468078, 1104191608, 23891534758, 528527606698, 11905777228618, 272269758961018, 6306419621308618, 147677930682023818, 3491114167267938298, 83217317955857060788, 1998209467779811473538, 48293984598611551487038, 1174012306200941229710038, 28689784424223599507417938
Offset: 0

Views

Author

Emanuele Munarini, Oct 25 2016

Keywords

Crossrefs

Cf. A007004.

Programs

  • Mathematica
    Table[Sum[Multinomial[k, k, k]/(k + 1), {k, 0, n}], {n, 0, 100}]
  • Maxima
    makelist(sum(multinomial_coeff(k,k,k)/(k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} multinomial(k,k,k)/(k+1).
Recurrence: (n+2)*(n+3)*a(n+2)-(28*n^2+86*n+66)*a(n+1)+3*(3*n+5)*(3*n+4)*a(n)=0.
a(n) = hypergeometric(1/3,2/3;2;27) - (multinomial(n+1,n+1,n+1)/(n+2)) * hypergeometric(1,n+4/3,n+5/3;n+2,n+3;27).
a(n) = 0 (mod 2) and a(n) = 1 (mod 3), for all natural n.
G.f.: hypergeometric(1/3,2/3;2;27*t)/(1-t).
a(n) ~ 3^(3*n+7/2) / (52*Pi*n^2). - Vaclav Kotesovec, Oct 30 2016