cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277639 Double binomial partial sums of A007004.

Original entry on oeis.org

1, 4, 43, 718, 14779, 344452, 8725093, 234594766, 6596287411, 192032529388, 5747827847545, 175986201591130, 5490952102178725, 174077883157001740, 5594651323154783515, 181946073109880839450, 5978730547304013537475, 198263347772478727193740, 6628299876919271425393105, 223211734849614639629628010, 7566093949269408444819804937
Offset: 0

Views

Author

Emanuele Munarini, Oct 25 2016

Keywords

Crossrefs

Cf. A007004.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Multinomial[k,k,k]/(k+1), {k,0,n}], {n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)^2*multinomial_coeff(k,k,k)/(k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2*multinomial(k,k,k)/(k+1).
a(n) = hypergeometric(1/3,2/3,-n,-n;1,1,2;27).
Double e.g.f.: BesselI(0,2*sqrt(t))*hypergeometric(1/3,2/3;1,1,2;27*t).
D-finite with recurrence: n^2*(n+1)^2*(1058*n^4 - 7061*n^3 + 16158*n^2 - 14048*n + 3284)*a(n) = 2*n*(30682*n^7 - 219052*n^6 + 555798*n^5 - 545060*n^4 + 16565*n^3 + 323730*n^2 - 206943*n + 39408)*a(n-1) - (834762*n^8 - 7954803*n^7 + 30596846*n^6 - 59518007*n^5 + 57023894*n^4 - 13636388*n^3 - 20674168*n^2 + 16952656*n - 3600432)*a(n-2) + 2*(n-2)^2*(744832*n^6 - 5313736*n^5 + 13458434*n^4 - 12947434*n^3 - 64535*n^2 + 6504872*n - 2110473)*a(n-3) - 676*(n-3)^2*(n-2)^2*(1058*n^4 - 2829*n^3 + 1323*n^2 + 1317*n - 609)*a(n-4). - Vaclav Kotesovec, Oct 30 2016
a(n) ~ sqrt(205/162 + 1939/(729*sqrt(3))) * (28+6*sqrt(3))^n / (Pi^(3/2)*n^(5/2)). - Vaclav Kotesovec, Oct 30 2016