A277661 1st-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
0, 0, 2, 18, 128, 840, 5306, 32802, 200064, 1209168, 7261042, 43394802, 258401216, 1534310232, 9089538922, 53748310338, 317337926144, 1871206403232, 11021718519266, 64859423566290, 381371547195648, 2240888478928488, 13159108981577242, 77232197285953890, 453066998085075840, 2656691258873376240
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(1 - 3 x)/(2 (x^2 - 6 x + 1)) - 1/(2 (x^2 - 6 x + 1)^(1/2)), {x, 0, 25}], x] (* Michael De Vlieger, Oct 26 2016 *)
Formula
G.f.: (1-3*x)/(2*(x^2-6*x+1))-1/(2*(x^2-6*x+1)^(1/2)).
a(n) ~ 2^(-5/2) * (3*sqrt(2)-4) * (1+sqrt(2))^(2*n+2) * (1 - 1/(sqrt(Pi*(3*sqrt(2)-4)*n))). - Vaclav Kotesovec, Oct 27 2016
Extensions
More terms from Michael De Vlieger, Oct 26 2016
Comments