Fabio Deelan Cunden has authored 7 sequences.
A277665
5th-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 42, 6426, 291696, 7786680, 152881422, 2451889734, 34052988736, 424606263984, 4868397305884, 52193110266396, 529596113392928, 5132630490667056, 47846123752559076, 431382289963465044, 3778388016547646976, 32265703705734047808, 269434703704642529046, 2205554182120984631622
Offset: 0
-
y[z] := z^2 - 6*z + 1; CoefficientList[Series[-(2*z*(96*z^7 - 456*z^6 + 2992*z^5 - 7068*z^4 + 3089*z^3 + 8214*z^2 + 979*z + 12))/(y[z]^(13/2)) - (2*z*(288*z^8 + 776*z^7 - 336*z^6 - 2916*z^5 + 6276*z^4 - 1312*z^3 - 7560*z^2 - 964*z - 12))/(y[z]^7), {z,0,50}], z] (* G. C. Greubel, Jan 29 2017 *)
A277664
4th-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 22, 1638, 47454, 904530, 13529862, 172576362, 1966038698, 20583987894, 201838423616, 1878183167916, 16744919877108, 144061342087884, 1202594886126228, 9783039293041644, 77823360967288812, 607079393002409364, 4654603707195506610, 35144449267872359562, 261740341786424075106
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
-
y[z] := z^2 - 6*z + 1; CoefficientList[Series[(2*(36*z^7 + 20*z^6 + 24*z^5 - 219*z^4 + 216*z^3 + 163*z^2 + 6*z))/(y[z]^(11/2)) + (2*(12*z^8 - 132*z^7 + 618*z^6 - 1830*z^5 + 1840*z^4 + 720*z^3 - 134*z^2 - 6*z))/(y[z]^6), {z, 0, 50}],z] (* G. C. Greubel, Jan 29 2017 *)
A277663
3rd-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 10, 378, 7048, 96000, 1092460, 11060700, 103150528, 905077728, 7576640950, 61098854454, 477942694136, 3645484792560, 27220292840440, 199588002587160, 1440630859132416, 10256896070590464, 72150109176698562, 502120765832371602, 3461203073248719400, 23654601049848668256
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016). E-print arXiv:1607.00250.
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16, 123018 (2014), arXiv:1409.1532 [nlin.CD], 2014.
-
CoefficientList[Series[-(2 x) (2 x^3 - 9 x^2 + 19 x + 3) / ((x^2 - 6 x + 1)^(7/2)) - (2 x) (6 x^4 - 5 x^3 + 9 x^2 - 15 x - 3) / ((x^2 - 6 x + 1)^4), {x, 0, 25}], x] (* Vincenzo Librandi, Nov 07 2016 *)
A277662
2nd-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 6, 102, 1142, 10650, 89576, 705012, 5297924, 38478492, 272262050, 1887071274, 12862479402, 86468603910, 574580180020, 3780504491400, 24663229376872, 159709443132888, 1027505285362590, 6572573611318158, 41827041105943870, 264959521695360786, 1671472578046156512, 10504743400858155708
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
-
CoefficientList[Series[(x^2 - 3 x)/((x^2 - 6 x + 1)^2) + (3 x^3 - 4 x^2 + 3 x)/((x^2 - 6 x + 1)^(5/2)), {x, 0, 23}], x] (* Michael De Vlieger, Oct 26 2016 *)
A277661
1st-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 2, 18, 128, 840, 5306, 32802, 200064, 1209168, 7261042, 43394802, 258401216, 1534310232, 9089538922, 53748310338, 317337926144, 1871206403232, 11021718519266, 64859423566290, 381371547195648, 2240888478928488, 13159108981577242, 77232197285953890, 453066998085075840, 2656691258873376240
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
-
CoefficientList[Series[(1 - 3 x)/(2 (x^2 - 6 x + 1)) - 1/(2 (x^2 - 6 x + 1)^(1/2)), {x, 0, 25}], x] (* Michael De Vlieger, Oct 26 2016 *)
A277660
2nd-order coefficients of the 1/N-expansion of traces of negative powers of complex Wishart matrices with parameter c=2.
Original entry on oeis.org
0, 0, 2, 30, 310, 2730, 21980, 167076, 1220100, 8650620, 59958030, 408172050, 2738441706, 18151701750, 119100934680, 774719545320, 5001728701800, 32081745977496, 204596905143930, 1298154208907430, 8199305968563710, 51576591659861730, 323239814342259892, 2019025558874685900
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
- J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
-
a := proc(n) option remember; if n = 1 then 0 elif n = 2 then 2 else (3*(2*n - 1)*a(n-1) - (n + 1)*a(n-2))/(n - 2) fi; end:
seq(a(n), n = 1..25); # Peter Bala, Sep 28 2024
-
a[n_] := If[n<2, 0, 2 GegenbauerC[n-2, 5/2, 3]]; a /@ Range[0, 20] (* Andrey Zabolotskiy, Oct 27 2016 *)
CoefficientList[Series[(2 x^2) / (x^2 - 6 x + 1)^(5/2), {x, 0, 25}], x] (* Vincenzo Librandi, Oct 30 2016 *)
-
x='x+O('x^50); concat([0,0], Vec((2*x^2)/(x^2-6*x+1)^(5/2))) \\ G. C. Greubel, Jun 05 2017
A272865
Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
Original entry on oeis.org
4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1
Triangle starts:
4;
24, 160;
132, 936, 5700;
720, 5312, 33264, 198144;
3940, 29880, 190980, 1155600, 6823620;
- F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, Moments of Random Matrices and Hypergeometric Orthogonal Polynomials, arXiv:1805.08760 [math-ph], 2018.
-
P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
-
Clear["Global`*"];(*Wigner-Smith Covariance*)
P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
Comments