A387341 Expansion of 1/(1 - 6*x + x^2)^(5/2).
1, 15, 155, 1365, 10990, 83538, 610050, 4325310, 29979015, 204086025, 1369220853, 9075850875, 59550467340, 387359772660, 2500864350900, 16040872988748, 102298452571965, 649077104453715, 4099652984281855, 25788295829930865, 161619907171129946, 1009512779437342950
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
Programs
-
Magma
R
:= PowerSeriesRing(Rationals(), 34); f := 1/(1 - 6*x + x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025 -
Mathematica
CoefficientList[Series[1/(1-6*x+x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
PARI
my(N=30, x='x+O('x^N)); Vec(1/(1-6*x+x^2)^(5/2))
Formula
n*a(n) = 3*(2*n+3)*a(n-1) - (n+3)*a(n-2) for n > 1.
a(n) = (binomial(n+4,2)/6) * A387337(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/6)^(n-2*k) * binomial(-5/2,k) * binomial(k,n-k).
a(n) = A277660(n+2)/2.
a(n) ~ n^(3/2) * (1 + sqrt(2))^(2*n+5) / (3*2^(17/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 27 2025
Comments