A277690 Smallest possible number of sides of a regular polygon with unit sides and circumradius at least n.
3, 6, 13, 19, 26, 32, 38, 44, 51, 57, 63, 70, 76, 82, 88, 95, 101, 107, 114, 120, 126, 132, 139, 145, 151, 158, 164, 170, 176, 183, 189, 195, 202, 208, 214, 220, 227, 233, 239, 246, 252, 258, 264, 271, 277, 283, 290, 296, 302, 308, 315
Offset: 0
Keywords
Examples
a(0) = 3, since this is the smallest number of sides a regular polygon may have; a(1) = ceiling( Pi / arcsin(1/2) ) = ceiling( Pi/(Pi/6) ) = 6; a(2) = ceiling( Pi / arcsin(1/4) ) = ceiling( Pi/(0.2526...) ) = 13; ...
Programs
-
Mathematica
Table[If[n == 0, 3, Ceiling[Pi/ArcSin[1/(2 n)]]], {n, 0, 50}] (* Michael De Vlieger, Oct 28 2016 *) (* corrected on Aug 28 2023 by John D. Dixon *)
-
PARI
a(n) = if (n==0, 3, ceil(Pi/asin(1/(2*n)))); \\ Michel Marcus, Oct 28 2016; corrected Jun 13 2022 \\ corrected again on Aug 28 2023 by John D. Dixon
Formula
a(n) = ceiling( Pi / arcsin(1/(2*n)) ).
Extensions
First term and definition corrected by John D. Dixon, Aug 28 2023
Comments