A277697 a(n) = index of the least unitary prime divisor of n or 0 if no such prime-divisor exists.
0, 1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 2, 6, 1, 2, 0, 7, 1, 8, 3, 2, 1, 9, 2, 0, 1, 0, 4, 10, 1, 11, 0, 2, 1, 3, 0, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 0, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 0, 3, 1, 19, 7, 2, 1, 20, 0, 21, 1, 2, 8, 4, 1, 22, 3, 0, 1, 23, 2, 3, 1, 2, 5, 24, 1, 4, 9, 2, 1, 3, 2, 25, 1, 5, 0, 26, 1, 27, 6, 2
Offset: 1
Keywords
Examples
For n = 8 = 2*2*2, none of the prime divisors are unitary, thus a(8) = 0. For n = 20 = 2*2*5 = prime(1)^2 * prime(3), the prime divisor 2 is not unitary, but 5 (= prime(3)) is, thus a(20) = 3. For n = 36 = 2*2*3*3, none of the prime divisors are unitary, thus a(36) = 0.
Links
Crossrefs
Programs
-
Mathematica
Table[If[Length@ # == 0, 0, PrimePi@ First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* Michael De Vlieger, Oct 30 2016 *)
-
PARI
a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(primepi(f[i, 1])))); 0;} \\ Amiram Eldar, Jul 28 2024
-
Python
from sympy import factorint, primepi, isprime, primefactors def a049084(n): return primepi(n)*(1*isprime(n)) def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def a028234(n): f = factorint(n) return 1 if n==1 else n/(min(f)**f[min(f)]) def a067029(n): f=factorint(n) return 0 if n==1 else f[min(f)] def a(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
-
Scheme
(definec (A277697 n) (cond ((= 1 n) 0) ((= 1 (A067029 n)) (A055396 n)) (else (A277697 (A028234 n)))))