A277835 Number of '5' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
0, 0, 1, 22, 343, 4665, 58993, 713385, 8368417, 96029849, 1083755281, 12072120713, 133066886145, 1454125651577, 15775824417009, 170103923182448, 1824496021947951, 19479528120714094, 207140960219486637, 2194866392318323180, 23183231824417799723
Offset: 0
Examples
For n = 2 there is only one digit '5' in the sequence 0, 1, 2, ..., 12. For n = 3 there are 11 + 10 = 21 more digits '5' in { 15, 25, ..., 45, 50, ..., 59, 65, ..., 115 }, where 55 accounts for two '5's.
Links
- David A. Corneth, Table of n, a(n) for n = 0..998
Programs
-
PARI
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==5,digits(k)))))
-
PARI
A277835(n,m=5)=if(n>m,A277835(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016
Formula
Extensions
More terms from Lars Blomberg, Nov 05 2016
Removed incorrect b-file. - David A. Corneth, Dec 31 2020