A277836 Number of '6' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
0, 0, 1, 22, 343, 4664, 58986, 713315, 8367717, 96022849, 1083685281, 12071420713, 133059886145, 1454055651577, 15775124417009, 170096923182441, 1824426021947881, 19478828120713394, 207133960219479637, 2194796392318253180, 23182531824417099723
Offset: 0
Examples
For n=2 there is only one digit '6' in the sequence 0, 1, 2, ..., 12. For n=3 there are 11 + 10 = 21 more digits '6' in { 16, 26, ..., 56, 60, ..., 69, 76, 86, ..., 116 }, where 66 accounts for two '6's.
Links
- David A. Corneth, Table of n, a(n) for n = 0..998
Programs
-
Mathematica
T[int_Integer, {bndsLow_Integer, bndsUpp_Integer}] := Table[ Count[ Flatten[Table[ IntegerDigits[m], {m, 1, Sum[ 10^i - 1, {i, n} ]/9 } ]], int ], {n, bndsLow, bndsUpp} ]; T[6, {0, 7}](* Robert P. P. McKone, Jan 01 2021 *)
-
PARI
print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==6,digits(k)))))
-
PARI
A277836(n,m=6)=if(n>m,A277836(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016
Formula
Extensions
More terms from Lars Blomberg, Nov 05 2016
Removed incorrect b-file. - David A. Corneth, Dec 31 2020