A277875 a(n) is the odd multiplier q in the expressions 2*(q*2^n - 1) and 2*(q*3^n - 1) of numbers A277215(n) and A277874(n), respectively.
1, 7, 1, 1, 1, 19, 13, 1, 1, 1, 1, 7, 5, 11, 1, 1, 1, 7, 11, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 7, 1, 1, 1, 1, 1, 11, 5, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 7, 5, 11, 1, 7, 5, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 1, 1, 11, 1, 7, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 2*(1*2^0 - 1) is the start and end of the first alternating sequence of 1 element and the maximum of its trajectory. a(5) = 19 since 9232 = 2*(19*3^5 - 1) is the last element in the first alternating sequence of 11 elements - 1214, 607, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232 - that ends in the trajectory maximum.
Programs
-
Mathematica
(* we use function altdata[] from A277215 *) a277875[n_]:=Map[#[[2]]&, altdata[2,n]] Join[{1,7}, a277875[99]] (* sequence data *)
Comments