cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277885 a(n) = index of the least non-unitary prime divisor of n or 0 if no such prime-divisor exists.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 4, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Crossrefs

Cf. A277697.
Cf. A005117 (gives the positions of zeros).

Programs

  • Mathematica
    Table[PrimePi@ Min[Select[FactorInteger[n][[All, 1]], ! CoprimeQ[#, n/#] &] /. {} -> 0], {n, 120}] (* Michael De Vlieger, Nov 15 2016 *)
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] > 1, return(primepi(f[i, 1])))); 0;} \\ Amiram Eldar, Jul 28 2024
  • Python
    from sympy import factorint, primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a028234(n):
        f = factorint(n)
        return 1 if n==1 else n/(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a(n): return 0 if n==1 else a055396(n) if a067029(n)>1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
    
  • Scheme
    (definec (A277885 n) (cond ((= 1 n) 0) ((< 1 (A067029 n)) (A055396 n)) (else (A277885 (A028234 n)))))
    

Formula

a(1) = 0; for n > 1, if A067029(n) > 1, a(n) = A055396(n), otherwise a(n) = a(A028234(n)). [One may use A032742 instead of A028234 for recursing.]
A008578(1+a(n)) = A249739(n).
For n > 1, a(n) + A277697(n) > 0.