cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277891 a(n) = number of odd numbers encountered before reaching (n^2)-1 when starting from k = ((n+1)^2)-1 and iterating map k -> k - A002828(k).

Original entry on oeis.org

1, 0, 2, 1, 2, 2, 4, 2, 4, 3, 4, 4, 6, 5, 7, 6, 5, 6, 7, 7, 6, 6, 11, 9, 9, 9, 12, 9, 10, 9, 11, 11, 12, 11, 14, 13, 15, 12, 14, 14, 16, 14, 15, 13, 15, 17, 18, 17, 14, 17, 19, 18, 20, 17, 22, 19, 22, 20, 20, 22, 20, 22, 23, 22, 24, 25, 22, 22, 25, 26, 26, 25, 28, 24, 30, 26, 28, 29, 27, 27, 28, 32, 29, 28, 32, 32, 29, 31, 30, 29, 35, 33, 32, 32, 35, 34, 35, 36
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

The starting point ((n+1)^2)-1 of the iteration is included if it is odd, but the ending point (n^2)-1 is never included in the count.
a(n) = number of odd numbers on row n of A276574, after the initial zero-row.
On the average, the odd terms in A276573 (A276574) seem to occur more frequently than the even terms. (The last point in range 1..10000 where a(n) <= A277890(n) is n=862). See also comments in A277487 and the plot of ratio a(n)/A277890(n), also the plot of A277889.

Examples

			For n=6, we start iterating from k = ((6+1)^2)-1 = 48, with k -> k - A002828(k), to obtain 48 -> 45 -> 43 -> 40 -> 38 before reaching 35 (which is 6^2 - 1, an ending point and thus not included in the count), and the only odd numbers before that were 45 and 43, thus a(6) = 2.
		

Crossrefs

Programs

  • PARI
    istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1
    isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7
    A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From Charles R Greathouse IV, Jul 19 2011
    A277891(n) = { my(orgk = ((n+1)^2)-1); my(k = orgk, s = 0); while(((k == orgk) || !issquare(1+k)), s = s + (k%2); k = k - A002828(k)); s; };
    for(n=1, 10000, write("b277891.txt", n, " ", A277891(n)));
    
  • Scheme
    (define (A277891 n) (let ((org_k (- (A000290 (+ 1 n)) 1))) (let loop ((k org_k) (s 0)) (if (and (< k org_k) (= 1 (A010052 (+ 1 k)))) s (loop (- k (A002828 k)) (+ s (A000035 k)))))))

Formula

a(n) + A277890(n) = A260734(n).
a(n) >= A277487(n).