cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277892 a(n) = A001222(A048675(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 1, 4, 2, 5, 2, 2, 2, 6, 1, 7, 2, 2, 1, 8, 1, 3, 2, 2, 2, 9, 1, 10, 1, 3, 2, 3, 2, 11, 2, 2, 1, 12, 1, 13, 3, 3, 1, 14, 2, 4, 2, 3, 2, 15, 1, 3, 1, 3, 4, 16, 3, 17, 3, 3, 2, 4, 1, 18, 3, 3, 1, 19, 1, 20, 2, 2, 3, 4, 2, 21, 3, 3, 2, 22, 3, 3, 2, 2, 1, 23, 2, 4, 3, 5, 3, 4, 1, 24, 1, 3, 2, 25, 1, 26, 2, 2
Offset: 2

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

For n >= 3, a(n) = index of the row where n is located in array A277898.

Crossrefs

Left inverse of A065091.
Cf. A277319 (positions of ones).
Cf. A000040 (positions of records), A277900.
Cf. A277895 (ordinal transform from a(3) onward).

Programs

  • Mathematica
    A048675[n_] := If[n == 1, 0, Total[#[[2]]*2^(PrimePi[#[[1]]] - 1)& /@ FactorInteger[n]]];
    a[n_] := PrimeOmega[A048675[n]];
    Table[a[n], {n, 2, 105}] (* Jean-François Alcover, Jan 11 2022 *)
  • PARI
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2;
    A277892(n) = if(1==n,0,bigomega(A048675(n)));
    for(n=1, 3465, write("b277892.txt", n, " ", A277892(n)));
    
  • Python
    from sympy import factorint, primepi, primefactors
    def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
    def a048675(n):
        if n==1: return 0
        f=factorint(n)
        return sum(f[i]*2**(primepi(i) - 1) for i in f)
    def a(n): return a001222(a048675(n))
    print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jun 19 2017
  • Scheme
    (define (A277892 n) (if (= 1 n) 0 (A001222 (A048675 n))))
    

Formula

a(A019565(n)) = a(A260443(n)) = A001222(n).
For all n >= 2, a(A065091(n)) = n.

A277898 Square array A(r,c), where each row r lists all numbers k for which A277892(k) = r, read by downwards antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

3, 4, 5, 6, 9, 7, 8, 12, 25, 11, 10, 14, 33, 49, 13, 18, 15, 35, 58, 93, 17, 22, 16, 44, 65, 119, 169, 19, 24, 20, 45, 77, 121, 185, 287, 23, 30, 21, 51, 91, 124, 209, 289, 361, 29, 32, 26, 55, 95, 143, 214, 299, 437, 529, 31, 40, 27, 57, 106, 161, 221, 323, 473, 589, 802, 37, 42, 28, 60, 111, 177, 247, 327, 493, 611, 841, 934, 41
Offset: 3

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

Permutation of natural numbers larger than 2.

Examples

			The top left corner of the array:
   3,    4,    6,    8,   10,   18,   22,   24,   30,   32
   5,    9,   12,   14,   15,   16,   20,   21,   26,   27
   7,   25,   33,   35,   44,   45,   51,   55,   57,   60
  11,   49,   58,   65,   77,   91,   95,  106,  111,  115
  13,   93,  119,  121,  124,  143,  161,  177,  187,  203
  17,  169,  185,  209,  214,  221,  247,  254,  301,  305
  19,  287,  289,  299,  323,  327,  391,  393,  398,  403
  23,  361,  437,  473,  493,  551,  565,  629,  633,  685
  29,  529,  589,  611,  667,  713,  779,  817,  889,  893
  31,  802,  841,  842,  851,  899,  901,  989, 1073, 1081
  37,  934,  961, 1121, 1147, 1154, 1189, 1227, 1271, 1293
  41, 1333, 1369, 1403, 1437, 1517, 1538, 1591, 1643, 1761
  43, 1681, 1739, 1763, 1927, 1943, 2183, 2257, 2263, 2302
  47, 1754, 1849, 2021, 2173, 2201, 2279, 2501, 2623, 2747
  53, 2209, 2491, 2537, 2594, 2643, 2701, 2773, 2881, 3053
		

Crossrefs

Transpose: A277897.
Row 1: A277319.
Column 1: A065091, column 2: A277900.
Cf. A277892 (index of the row where n is located), A277895 (of the column).

Programs

Formula

A(r,1) = A065091(r); for c > 1, A(r,c) = A277893(A(r,c-1)).

A277895 a(n) is the index of the column where n is located in array A277898, a(2) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 2, 5, 1, 3, 1, 4, 5, 6, 1, 6, 1, 7, 8, 7, 1, 8, 2, 9, 10, 11, 1, 9, 1, 10, 3, 12, 4, 13, 1, 14, 15, 11, 1, 12, 1, 5, 6, 13, 1, 16, 2, 17, 7, 18, 1, 14, 8, 15, 9, 3, 1, 10, 1, 11, 12, 19, 4, 16, 1, 13, 14, 17, 1, 18, 1, 20, 21, 15, 5, 22, 1, 16, 17, 23, 1, 18, 19, 24, 25, 19, 1, 26, 6, 20, 2, 21, 7, 20, 1, 21, 22, 27, 1
Offset: 2

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

a(2) = 0 as 2 does not occur in the array A277898 proper.
From a(3) onward the ordinal transform of A277892 from its first nonzero term a(3) onward: 1, 1, 2, 1, 3, 1, 2, 1, 4, 2, 5, 2, 2, 2, 6, 1, 7, 2, ... The relation does not hold the other way, because not all columns of A277898 are monotonic, for example, 16 is located below 18 in the sixth column of that array. Already the array's second column (A277900) is nonmonotonic.

Crossrefs

Programs

  • Mathematica
    A048675[n_] := If[n == 1, 0, Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]]];
    A277892[n_] := PrimeOmega[A048675[n]];
    Module[{b}, b[_] = 0;
    a[n_] := If[n == 2, 0, With[{t = A277892[n]}, b[t] = b[t] + 1]]];
    Table[a[n], {n, 2, 101}] (* Jean-François Alcover, Jan 11 2022 *)
  • Scheme
    (definec (A277895 n) (cond ((<= n 2) 0) ((= 1 (A010051 n)) 1) (else (+ 1 (A277895 (A277894 n))))))

Formula

a(2)=0, for n >= 3, if A010051(n) = 1 [when n is a prime], a(n) = 1, otherwise a(n) = 1 + a(A277894(n)).
Showing 1-3 of 3 results.