A277915 A(n,k) is the n-th number m such that a nontrivial prime(k)-th root of unity modulo m exists; square array A(n,k), n>=1, k>=1, read by antidiagonals.
8, 7, 12, 11, 9, 15, 29, 22, 13, 16, 23, 43, 25, 14, 20, 53, 46, 49, 31, 18, 21, 103, 79, 67, 58, 33, 19, 24, 191, 137, 106, 69, 71, 41, 21, 28, 47, 229, 206, 131, 89, 86, 44, 26, 30, 59, 94, 361, 239, 157, 92, 87, 50, 27, 32, 311, 118, 139, 382, 274, 158, 115, 98, 55, 28, 33
Offset: 1
Examples
Square array A(n,k) begins: : 8, 7, 11, 29, 23, 53, 103, 191, ... : 12, 9, 22, 43, 46, 79, 137, 229, ... : 15, 13, 25, 49, 67, 106, 206, 361, ... : 16, 14, 31, 58, 69, 131, 239, 382, ... : 20, 18, 33, 71, 89, 157, 274, 419, ... : 21, 19, 41, 86, 92, 158, 289, 457, ... : 24, 21, 44, 87, 115, 159, 307, 458, ... : 28, 26, 50, 98, 121, 169, 309, 571, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..200, flattened
- Wikipedia, Root of unity modulo n
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc() local j, l; l:= proc() [] end; proc(n, k) while nops(l(k))
lambda(j) or k>1 and irem(phi(j), ithprime(k))=0 then l(k):= [l(k)[], j]; break fi od od: l(k)[n] end end(): seq(seq(A(n, 1+d-n), n=1..d), d=1..15); -
Mathematica
A[n_, k_] := Module[{j, l = {}}, While[Length[l]
CarmichaelLambda[j] || k>1 && Mod[EulerPhi[j], Prime[k]]==0, AppendTo[l, j]; Break[]]]]; l[[n]]]; Table[A[n, 1 + d - n], {d, 1, 15}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)
Comments