cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277930 Array of coefficients a(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = ((2*k+1)*x+sqrt(1+4*k*(k+1)*x^2))/(1-x^2), k>=0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 3, 1, 1, 9, 25, 5, -3, 1, 1, 11, 41, 7, -59, 3, 1, 1, 13, 61, 9, -263, 5, 29, 1, 1, 15, 85, 11, -759, 7, 805, 3, 1, 1, 17, 113, 13, -1739, 9, 6649, 5, -131, 1, 1, 19, 145, 15, -3443, 11, 31241, 7, -12155, 3, 1, 1, 21, 181, 17, -6159, 13, 106261, 9, -200711, 5, 765, 1
Offset: 0

Views

Author

Werner Schulte, Nov 04 2016

Keywords

Comments

The A(k,x) satisfy A(k,x)^2 = 1+(4*k+2)*x*A(k,x)+x^2*A(k,x)^2 for k>=0.
The terms of odd-numbered columns a(k,2*n+1) are simple with (2*k+1)*x/(1-x^2), analogous the even-numbered columns a(k,2*n) with the o.g.f. of A000108.

Examples

			The terms define the array a(k,n) for k >= 0 and n >= 0, i.e.,
k\n  0   1    2   3       4   5        6   7           8   9         10  11  ...
0:   1   1    1   1       1   1        1   1           1   1          1   1  ...
1:   1   3    5   3      -3   3       29   3        -131   3        765   3  ...
2:   1   5   13   5     -59   5      805   5      -12155   5     205573   5  ...
3:   1   7   25   7    -263   7     6649   7     -200711   7    6766585   7  ...
4:   1   9   41   9    -759   9    31241   9    -1568759   9   88031241   9  ...
5:   1  11   61  11   -1739  11   106261  11    -7993739  11  672406261  11  ...
6:   1  13   85  13   -3443  13   292909  13   -30824051  13  ...
7:   1  15  113  15   -6159  15   696305  15   -97648655  15  ...
8:   1  17  145  17  -10223  17  1482769  17  -267255791  17  ...
9:   1  19  181  19  -16019  19  2899981  19  ...
10:  1  21  221  21  -23979  21  5300021  21  ...
etc.
The formal power series corresponding to row 2 is A(2,x) = 1+5*x+13*x^2+5*x^3 ..
The terms define the triangle T(k,n) = a(k-n,n) for 0 <= n <=k, i.e.,
k\n  0  1   2  3   4  5  ...
0:   1
1:   1  1
2:   1  3   1
3:   1  5   5  1
4:   1  7  13  3   1
5:   1  9  25  5  -3  1
etc.
		

Crossrefs

Programs

  • Mathematica
    A[k_, n_]:=If[n==0, 1, If[EvenQ[n], 1 - 2 Sum[CatalanNumber[i] (-k(k + 1))^(i + 1), {i, 0, (n - 2)/2}], 2k + 1]]; Table[A[n - k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Indranil Ghosh, Aug 03 2017 *)
  • Python
    from sympy import catalan
    def A(k, n): return 1 if n==0 else 1 - 2*sum([catalan(i)*(-k*(k + 1))**(i + 1) for i in range(n//2)]) if n%2==0 else 2*k + 1
    for n in range(13): print([A(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 03 2017

Formula

a(k,0) = 1 and a(k,2*n+2) = 1-2*(Sum_{i=0..n} A000108(i)*(-k*(k+1))^(i+1)) and a(k,2*n+1) = 2*k+1 for k >= 0 and n >= 0.
A(k,x) = (1+(2*k+1)*x+2*k*(k+1)*x^2*C(-k*(k+1)*x^2))/(1-x^2) for k >= 0, where C is the o.g.f. of A000108.
A(k,x)*A(k,-x) = 1/(1-x^2) for k >= 0.
Conjecture: a(k,2*n+2) = 1+2*k+2*(-k)^(n+2)*(Sum_{i=0..n} A234950(n,i)*k^i) for k>=0 and n>=0. - Werner Schulte, Aug 03 2017