A277935 Number of ways 2*n-1 people can vote on three candidates so that the Condorcet paradox arises.
0, 2, 12, 42, 112, 252, 504, 924, 1584, 2574, 4004, 6006, 8736, 12376, 17136, 23256, 31008, 40698, 52668, 67298, 85008, 106260, 131560, 161460, 196560, 237510, 285012, 339822, 402752, 474672, 556512, 649264, 753984, 871794, 1003884, 1151514, 1316016, 1498796
Offset: 1
Examples
For n=2 (three voters), the two possible ways the Condorcet paradox arises are: 1) one voter prefers A to B to C, one prefers B to C to A, and one prefers C to A to B. 2) one voter prefers A to C to B, one prefers C to B to A, and one prefers B to A to C.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Embar, D. Zeilberger,Counting Condorcet, Enum. Combin. Applic. 2 (2022) #S2R22
- Wikipedia, Condorcet paradox
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A000389.
Programs
-
Magma
[(2/Factorial(5))*n*(n-1)*(n+3)*(n+2)*(n+1): n in [1..30]]; // G. C. Greubel, Nov 25 2017
-
Mathematica
Table[(2/5!)*n*(n - 1)*(n + 3)*(n + 2)*(n + 1), {n, 1, 50}] (* G. C. Greubel, Nov 25 2017 *) a[n_] := 2 Binomial[n + 3, 5]; Array[a, 40] (* or *) Rest@ CoefficientList[ Series[2 x^2/(x - 1)^6, {x, 0, 40}], x] (* or *) Range[0, 40]! CoefficientList[ Series[x^2 (x^3 + 15x^2 + 60x + 60) Exp[x]/60, {x, 0, 40}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 12, 42, 112, 252, 504}, 40] (* Robert G. Wilson v, Nov 25 2017 *)
-
PARI
for(n=1,30, print1((2/5!)*n*(n-1)*(n+3)*(n+2)*(n+1), ", ")) \\ G. C. Greubel, Nov 25 2017
Formula
a(n) = (2/5!)*n*(n-1)*(n+3)*(n+2)*(n+1).
From N. J. A. Sloane, Nov 10 2016: (Start)
a(n) = 2*binomial(n+3,5) = 2*A000389(n+3).
G.f.: 2*x^2/(1-x)^6. (End)
E.g.f.: x^2*(60 + 60*x + 15*x^2 + x^3)*exp(x)/60. - G. C. Greubel, Nov 25 2017