cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277935 Number of ways 2*n-1 people can vote on three candidates so that the Condorcet paradox arises.

Original entry on oeis.org

0, 2, 12, 42, 112, 252, 504, 924, 1584, 2574, 4004, 6006, 8736, 12376, 17136, 23256, 31008, 40698, 52668, 67298, 85008, 106260, 131560, 161460, 196560, 237510, 285012, 339822, 402752, 474672, 556512, 649264, 753984, 871794, 1003884, 1151514, 1316016, 1498796
Offset: 1

Views

Author

Andrew Lohr, Nov 04 2016

Keywords

Examples

			For n=2 (three voters), the two possible ways the Condorcet paradox arises are:
1) one voter prefers A to B to C, one prefers B to C to A, and one prefers C to A to B.
2) one voter prefers A to C to B, one prefers C to B to A, and one prefers B to A to C.
		

Crossrefs

Cf. A000389.

Programs

  • Magma
    [(2/Factorial(5))*n*(n-1)*(n+3)*(n+2)*(n+1): n in [1..30]]; // G. C. Greubel, Nov 25 2017
  • Mathematica
    Table[(2/5!)*n*(n - 1)*(n + 3)*(n + 2)*(n + 1), {n, 1, 50}] (* G. C. Greubel, Nov 25 2017 *)
    a[n_] := 2 Binomial[n + 3, 5]; Array[a, 40] (* or *)
    Rest@ CoefficientList[ Series[2 x^2/(x - 1)^6, {x, 0, 40}], x] (* or *)
    Range[0, 40]! CoefficientList[ Series[x^2 (x^3 + 15x^2 + 60x + 60) Exp[x]/60, {x, 0, 40}], x] (* or *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 12, 42, 112, 252, 504}, 40] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    for(n=1,30, print1((2/5!)*n*(n-1)*(n+3)*(n+2)*(n+1), ", ")) \\ G. C. Greubel, Nov 25 2017
    

Formula

a(n) = (2/5!)*n*(n-1)*(n+3)*(n+2)*(n+1).
From N. J. A. Sloane, Nov 10 2016: (Start)
a(n) = 2*binomial(n+3,5) = 2*A000389(n+3).
G.f.: 2*x^2/(1-x)^6. (End)
E.g.f.: x^2*(60 + 60*x + 15*x^2 + x^3)*exp(x)/60. - G. C. Greubel, Nov 25 2017