A277946 Squares whose largest decimal digit is 2.
121, 10201, 12100, 22201, 1002001, 1020100, 1022121, 1210000, 1212201, 2220100, 100020001, 100200100, 100220121, 102010000, 102212100, 121000000, 121022001, 121220100, 210221001, 222010000, 10000200001, 10002000100, 10002200121, 10020010000, 10020210201
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..50 from Colin Barker, terms n = 51..474 from Robert Israel)
Programs
-
Magma
[n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 2]; // Vincenzo Librandi, Nov 06 2016
-
Maple
res:= NULL: B:= [1,2]: for m from 1 to 10 do for q in B do for x from ceil(sqrt(10^m*q)) to floor(sqrt(10^m*q + 2/9*(10^m-1))) do if max(convert(x^2,base,10)) = 2 then res:= res, x^2 fi od od: for q in B do for x from ceil(sqrt(10^(m+1)*q)) to floor(sqrt(10^(m+1)*q + 2/9*(10^(m+1)-1))) do if max(convert(x^2,base,10)) = 2 then res:= res, x^2 fi od od: if m < 10 then B:= map(t -> (10*t,10*t+1,10*t+2),B) fi; od: res; # Robert Israel, Nov 14 2016
-
Mathematica
fQ[n_] := Union[ IntegerDigits[ n^2]][[-1]] == 2; Select[ Range@100500, fQ]^2 (* Robert G. Wilson v, Nov 06 2016 *)
-
PARI
L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n^2))); Vec(L) \\ See A277959 for more efficient code. - M. F. Hasler, Nov 16 2017
Comments