cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277949 Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^4.

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1
Offset: 1

Views

Author

Juan Pablo Herrera P., Nov 05 2016

Keywords

Comments

Sum of n-th row is n^4. The n-th row contains 4n-3 entries. Largest coefficients of each row are listed in A005900.
The n-th row is the fourth row of the n-nomial triangle. For example, row 2 (1,4,6,4,1) is the fourth row in the binomial triangle.
T(n,k) gives the number of possible ways of randomly selecting k cards from n-1 sets, each with four different playing cards. It is also the number of lattice paths from (0,0) to (4,k) using steps (1,0), (1,1), (1,2), ..., (1,n-1).

Examples

			Triangle starts:
1;
1, 4, 6, 4, 1;
1, 4, 10, 16, 19, 16, 10, 4, 1;
1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1;
1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1;
1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1.
...
There are T(3,2) = 10 ways to select 2 cards from two sets of four playing cards ABCD, namely, {AA}, {AB}, {AC}, {AD}, {BB}, {BC}, {BD}, {CC}, {CD}, and {DD}.
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Series[((x^n - 1)/(x - 1))^4, {x, 0, 4 n}], x], {n, 6}] // Flatten (* Michael De Vlieger, Nov 10 2016 *)
  • PARI
    row(n) = Vec(((1 - x^n)/(1 - x))^4);
    tabf(nn) = for (n=1, nn, print(row(n)));

Formula

T(n,k) = Sum_{i=k-n+1..k} A109439(T(n,i)).
T(n,k) = A000292(k+1) = (k+3)!/(k!*6) if 0 =< k < n,
T(n,k) = ((k+3)*(k+2)*(k+1)-4*(k-n+3)*(k-n+2)*(k-n+1))/6 if n =< k < 2*n,
T(n,k) = ((4*n-1-k)*(4*n-2-k)*(4*n-3-k)-4*(3*n-1-k)*(3*n-2-k)*(3*n-3-k))/6 if 2*n-3 =< k < 3*n-3,
T(n,k) = A000292(4*n-3-k) = (4*n-1-k)!/((4*n-4-k)!*6) if 3*n-3 =< k < 4n-3.