cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277962 Least k such that A006577(k) = A006577(n) + A006577(n+1).

Original entry on oeis.org

2, 6, 12, 3, 34, 49, 9, 72, 98, 18, 25, 28, 33, 39, 36, 7, 57, 406, 65, 11, 72, 86, 98, 114, 114, 129, 913, 153, 153, 171, 27, 172, 203, 33, 39, 270, 270, 295, 270, 290, 290, 305, 361, 57, 57, 386, 73, 78, 481, 481, 78, 72, 514, 20174, 609, 641, 641, 641, 641
Offset: 1

Views

Author

Michel Lagneau, Nov 06 2016

Keywords

Comments

A006577(n) is the number of halving and tripling steps to reach 1 in the '3x+1' problem.
The distinct squares in the sequence are 9, 25, 36, 49, 169, 361, ...
The distinct primes in the sequence are 2, 3, 7, 11, 31, 41, 47, 71, 73, 97, 103, ...

Examples

			a(5)=34 because A006577(34) = 13 = A006577(5) + A006577(6) = 5 + 8.
		

Crossrefs

Cf. A006577.

Programs

  • Maple
    nn:=3*10^6:U:=array(1..nn):V:=array(1..nn):
    for i from 1 to nn do:
    m:=i:it0:=0:
       for j from 1 to nn while(m<>1) do:
        if irem(m, 2)=0
         then
         m:=m/2:it0:=it0+1:
         else
         m:=3*m+1:it0:=it0+1:
        fi:
       od:
       U[i]:=it0:
      od:
       for n from 1 to 60 do:
       ii:=0:
        for k from 1 to nn while(ii=0) do:
         if U[k]=U[n]+ U[n+1]
          then
          ii:=1:printf(`%d, `, k):
          else
         fi:
        od:
    od:
  • Mathematica
    f:=Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&]]-1,{n,3*10^6}];Do[k=1;While[f[[k]]!=f[[m]]+f[[m+1]],k++];Print[m," ",k],{m,1,60}]