A277970 Numbers k = A005574(m) such that k = (A005574(m-1)+A005574(m+1))/2.
4, 10, 20, 120, 130, 180, 230, 260, 440, 470, 680, 700, 750, 920, 1060, 1320, 1736, 1860, 1970, 2106, 2320, 2460, 2760, 2850, 2890, 3074, 3660, 3800, 4180, 4370, 5030, 5236, 5304, 5814, 5990, 6130, 6350, 6590, 6724, 6780, 6990, 7190, 7384, 7520, 7744, 8180
Offset: 1
Keywords
Examples
10 is in the sequence because from the triple (i, j, k) = (6, 10, 14) with j = (i + k)/2 = (6+14)/2 = 10, we obtain the three consecutive primes (i^2+1, j^2+1, k^2+1) = (37, 101, 197).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
nn:=100000:V:=array(1..6656):kk:=0: for i from 1 to nn do: x:=i^2+1: if isprime(x) then kk:=kk+1:V[kk]:=i: else fi: od: for n from 2 to kk-2 do: p:=V[n]:m:=V[n+1]:q:=V[n+2]: if (p+q)/2 = m then ii:=1:printf(`%d, `,V[n+1]): else fi: od:
-
Mathematica
P = Select[Range[10^4]^2+1, PrimeQ]; Reap[Do[{i, j, k} = Sqrt[P[[n ;; n+2]] - 1]; If[AllTrue[{i, j, k}, IntegerQ] && (i+k)/2 == j, Print[{i, j, k}]; Sow[j]], {n, 1, Length[P]-2}]][[2, 1]] (* Jean-François Alcover, Nov 08 2016 *)
Extensions
Name changed by Robert Israel, Jun 19 2019
Comments