A277980 a(n) = 12*n^2 + 18*n.
0, 30, 84, 162, 264, 390, 540, 714, 912, 1134, 1380, 1650, 1944, 2262, 2604, 2970, 3360, 3774, 4212, 4674, 5160, 5670, 6204, 6762, 7344, 7950, 8580, 9234, 9912, 10614, 11340, 12090, 12864, 13662, 14484, 15330, 16200, 17094, 18012, 18954, 19920
Offset: 0
Examples
a(3) = 162. Indeed, the double-wheel graph DW[3] has 6 edges with end-point degrees 3,3 and 6 edges with end-point degrees 3,6. Then the second Zagreb index is 6*9 + 6*18 = 162.
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[12*n^2+18*n: n in [0..40]]; // Vincenzo Librandi, Nov 09 2016
-
Maple
seq(12*n^2+18*n, n = 0 .. 50);
-
Mathematica
Table[12 n^2 + 18 n, {n, 0, 45}] (* Vincenzo Librandi, Nov 09 2016 *)
-
PARI
a(n)=12*n^2+18*n \\ Charles R Greathouse IV, Nov 09 2016
Comments