A277991 a(n) = 81*n^2 - 9*n.
0, 72, 306, 702, 1260, 1980, 2862, 3906, 5112, 6480, 8010, 9702, 11556, 13572, 15750, 18090, 20592, 23256, 26082, 29070, 32220, 35532, 39006, 42642, 46440, 50400, 54522, 58806, 63252, 67860, 72630, 77562, 82656, 87912, 93330, 98910
Offset: 0
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- M. R. Farahani, Some connectivity indices of polycyclic aromatic hydrocarbons (PAHs), Advances in Materials and Corrosion, 1, 2013, 65-69.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A277990.
Programs
-
Magma
[81*n^2-9*n: n in [0..35]]; // Vincenzo Librandi, Nov 13 2016
-
Maple
seq(81*n^2-9*n, n = 1..35);
-
PARI
a(n)=81*n^2-9*n \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: 18*x*(4 + 5x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Nov 13 2016
Comments