A277992 b(n, 2) where b(n, m) is defined by expansion of ((Product_{k>=1} (1 - x^(prime(n)*k))/(1 - x^k)^prime(n)) - 1)/prime(n) in powers of x.
2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157
Offset: 1
Keywords
Examples
a(1) = b(1, 2) = A014968(2) = 2. a(2) = b(2, 2) = A277968(2) = c(2, 2) = A000716(2)/3 = 3. a(3) = b(3, 2) = A277974(2) = c(3, 2) = A023004(2)/5 = 4. a(4) = b(4, 2) = A160549(2) = c(4, 2) = A023006(2)/7 = 5. a(5) = b(5, 2) = A277912(2) = c(5, 2) = A023010(2)/11 = 7.
Crossrefs
Formula
a(n) = A098090(n - 1) = (prime(n) + 3)/2 for n > 1.
Comments